首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The kinetics of reduction of oxidized Clostridium pasteurianum rubredoxin (Rdox) by free flavin semiquinones generated by the laser flash photolysis technique and by spinach ferredoxin:NADP+ reductase (FNR) semiquinone (also produced by flavin semiquinone reduction) have been investigated under anaerobic conditions. 5-Deazariboflavin semiquinone (5-dRf) rapidly reduces oxidized rubredoxin (Rdox) (k = 3.0 X 10(8) M-1 S-1) and oxidized ferredoxin:NADP+ reductase (FNRox) to the semiquinone level (k = 5.5 X 10(8) M-1 S-1). Lumiflavin semiquinone reduces Rdox more slowly (k = 1.3 X 10(7) M-1 S-1) and is not measurably reactive with FNRox. Absorption difference spectroscopy and difference CD indicate that Rdox and FNRox form a 1:1 complex at low ionic strength (10 mM), which is completely dissociated at higher ionic strength (310 mM). Apparent second order rate constants for reduction of Rdox in its free and complexed state by lumiflavin semiquinone are the same. Reduction of Rdox (both free and complexed) by free FNR semiquinone and intracomplex electron transfer were investigated using 5-dRf as the reductant. At I = 10 mM, a first order rate constant of 2.0 X 10(3) S-1 was obtained, which corresponds to the processes involved in intracomplex electron transfer from FNR semiquinone to Rdox. A second order reaction between free FNR semiquinone and complexed Rdox was also observed to occur (k = 5 X 10(7) M-1 S-1). At I = 310 mM, these reactions are not observed and the reaction of FNR semiquinone with free Rdox is second order (k = 4 X 10(6) M-1 S-1).  相似文献   

2.
The E. coli DNA photolyase is a flavoprotein that catalyzes the photoreversal of pyrimidine dimers. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and repairs the dimer upon absorbing a photon in the 300-600 nm range. The rate and equilibrium constants for the light-independent reaction were determined before, using randomly modified substrates that contained T mean value of T, T mean value of C and C mean value of C dimers in random sequence surrounding. In this paper we have determined these constants for a defined substrate (a 43 bp oligomer containing a T mean value of T dimer) using the gel retardation assay. We find that: the equilibrium constant and the off rate obtained with this substrate by this technique are similar to those obtained with randomly modified DNA using filter binding and flash photolysis techniques. the off rate with the defined substrate is heterogeneous indicating heterogeneity in the enzyme population or in the enzyme-substrate complexes, and the enzyme has 7.5 X 10(4)-fold higher affinity for pyrimidine dimer compared to non-dimer DNA nucleotides.  相似文献   

3.
The kinetics of the interaction between the 50 S subunits (R) of bacterial ribosomes and the antibiotics virginiamycin S (VS), virginiamycin M (VM), and erythromycin have been studied by stopped flow fluorimetric analysis, based on the enhancement of VS fluorescence upon its binding to the 50 S ribosomal subunit. Virginiamycin components M and S exhibit a synergistic effect in vivo, which is characterized in vitro by a 5- to 10-fold increase of the affinity of ribosomes for VS, and by the loss of the ability of erythromycin to displace VS subsequent to the conformational change (from R to R*) produced by transient contact of ribosomes with VM. Our kinetic studies show that the VM-induced increase of the ribosomal affinity for VS (K*VS = 25 X 10(6) M-1 instead of KVS = 5.5 X 10(6) M-1) is due to a decrease of the dissociation rate constant (k*-VS = 0.008 s-1 instead of 0.04 s-1). The association rate constant remains practically the same (k+VS approximately k*+VS = 2.8 X 10(5) M-1 s-1), irrespective of the presence of VM. VS and erythromycin bind competitively to ribosomes. This effect has been exploited to determine the dissociation rate constant of VS directly by displacement experiments from VS . 50 S complexes, and the association rate constant of erythromycin (k+Ery = 3.2 X 10(5) M-1 S-1) on the basis of competition experiments for binding of free erythromycin and VS to ribosomes. By making use of the change in competition behavior of erythromycin and VS, after interaction of ribosomes with VM, the conformational change induced by VM has been explored. Within the experimentally available concentration region, the catalytic effect of VM has been shown to be coupled to its binding kinetics, and the association rate constant of VM has been determined (k+VM = 1.4 X 10(4) M-1 S-1). Evidence is presented for a low affinity binding of erythromycin (K*Ery approximately 3.3 X 10(4) M-1) to ribosomes altered by contact with VM. A model involving a sequence of 5 reactions has been proposed to explain the replacement of ribosome-bound erythromycin by VS upon contact of 50 S subunits with VM.  相似文献   

4.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

5.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Several types of active-site-directed inactivators (inhibitors) of the Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase were tested. (i) Among the heavy-atom-containing compounds examined, K2Pt(C2O4)2 inactivates the enzyme with a second-order rate constant of about 6 X 10(-2)M-1 X S-1 and has only one binding site located close to the Zn2+ cofactor within the enzyme active site. (ii) Several compounds possessing both a C-terminal carboxylate function and, at the other end of the molecule, a thiol, hydroxamate or carboxylate function were also examined. 3-Mercaptopropionate (racemic) and 3-mercaptoisobutyrate (L-isomer) inhibit the enzyme competitively with a Ki value of 5 X 10 X 10(-9)M. (iii) Classical beta-lactam compounds have a very weak inhibitory potency. Depending on the structure of the compounds, enzyme inhibition may be competitive (and binding occurs to the active site) or non-competitive (and binding causes disruption of the protein crystal lattice). (iv) 6-beta-Iodopenicillanate inactivates the enzyme in a complex way. At high beta-lactam concentrations, the pseudo-first-order rate constant of enzyme inactivation has a limit value of 7 X 10(-4)S-1 X 6-beta-Iodopenicillanate binds to the active site just in front of the Zn2+ cofactor and superimposes histidine-190, suggesting that permanent enzyme inactivation is by reaction with this latter residue.  相似文献   

7.
The kinetics of CO binding to hepatic microsomes from phenobarbital-treated Sprague-Dawley rats, measured by stopped flow spectrophotometry, can be resolved into three components with second order velocity constants of 2.23 +/- 0.35 X 10(5) M-1 S-1, 1.59 +/- 0.18 X 10(6) M-1 S-1, and 8.7 +/- 1.7 X 10(6) M-1 S-1. The three CO-binding species were present in ratios of 1:1.25:1.39 as judged by the relative amplitude of the change in absorbance at 450 nm associated with each of the kinetic components. Similar results were obtained in a range of [CO] from 10 to 700 micron when CO recombination was followed subsequent to flash photolysis of the CO-associated microsomes. In contrast, the dissociation rate of CO from its cytochrome P-450 complex measured by the NO replacement method was biphasic. Approximately 40% of the bound CO dissociated at a rate of 0.40 +/- 0.071 s-1, whereas the remaining 60% dissociated at a rate of 0.049 +/- 0.008 s-1 at 20 degrees C.  相似文献   

8.
As shown by a nitrocellulose filter binding assay, in the absence of Mg2+ EcoRII restriction endonuclease binds specifically to a set of synthetic concatemer DNA duplexes of varying chain length, containing natural and modified recognition sites of this enzyme. The binding of the substrates with the central AT, TT or AA-pair in the recognition site decreases at AT greater than TT much greater than AA. Substitution of the pyrophosphate bond at the cleavage site for the phosphodiester or phosphoramide bond produces little influence on the stability of the complexes. The affinity of the enzyme for nonspecific sites is two orders of magnitude less than that for the specific EcoRII sequences. Equilibrium association constant for a substrate with one recognition site is 3.9 X 10(8) M-1. Addition of Mg2+ leads to the destabilization of the EcoRII endonuclease complex with DNA duplex, containing pyrophosphate bonds. The dissociation rate constants and the lifetime of the EcoRII endonuclease--synthetic substrates complexes have been determined.  相似文献   

9.
Resonance Raman and electron paramagnetic resonance spectroscopy have been utilized to identify histidine as an axial heme ligand in a high spin, heme c-containing protein isolated from the photosynthetic purple sulfur bacterium Chromatium vinosum. Resonance Raman spectroscopy has also been used to characterize the CO adduct of the C. vinosum hemoprotein. Resonance Raman spectra of the heme site obtained within 10 ns of CO photolysis from the ferrous hemoprotein are virtually identical to those of the unligated protein, indicating that there is little or no rearrangement of the heme pocket in response to ligand photolysis. The equilibrium constant for CO binding to the ferrous hemeprotein was measured to be 1.7 X 10(-5) M-1 and the CO association rate constant determined to be 5.4 X 10(3) M-1 S-1. The quantum efficiency for photodissociation of the hemoprotein X CO complex was greater than or equal to 0.9.  相似文献   

10.
P F Heelis  A Sancar 《Biochemistry》1986,25(25):8163-8166
Escherichia coli DNA photolyase contains a stable flavin neutral blue radical that is involved in photosensitized repair of pyrimidine dimers in DNA. We have investigated the effect of illumination on the radical using light of lambda greater than 520 nm from either a camera flash or laser. We find that both types of irradiations result in the photoreduction of the flavin radical with a quantum yield of 0.10 +/- 0.02. While photoreduction with the camera flash is minimal in the absence of an electron donor (dithiothreitol), laser flash photolysis at 532 nm reduces the flavin to the same extent in the presence or absence or an electron donor. Thus, it is concluded that the primary step in photoreduction involves an electron donor that is a constituent of the enzyme itself. Laser flash photolysis produces a transient absorption band at 420 nm that probably represents the absorption of the lowest excited doublet state (2(1)IIII*) of the radical and decays with first-order kinetics with k1 = 0.8 X 10(6) s-1. The photoreduction data combined with the results of recent studies on the activity of dithionite-reduced enzyme suggest that electron donation by excited states of E-FADH2 is the mechanism of flavin photosensitized dimer repair by E. coli DNA photolyase.  相似文献   

11.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

12.
Binding of Escherichia coli DNA photolyase to UV-irradiated DNA   总被引:10,自引:0,他引:10  
G B Sancar  F W Smith  A Sancar 《Biochemistry》1985,24(8):1849-1855
Escherichia coli DNA photolyase is a flavoprotein which catalyzes the photomonomerization of pyrimidine dimers produced in DNA by UV irradiation. In vivo, the enzyme acts by a two-step mechanism: it binds to dimer-containing DNA in a light-independent reaction and upon exposure to 300-500-nm light breaks the cyclobutane ring and dissociates from the substrate. Using photolyase purified to homogeneity, we have investigated in vitro the first step of the reaction, DNA binding; enzyme-DNA complex formation was quantitated by the nitrocellulose filter binding assay. We find that the enzyme binds specifically to UV-irradiated DNA regardless of whether the DNA is in the superhelical, open circular, or linear form or whether the DNA is single or double stranded. The binding reaction is optimum at a NaCl concentration of 125 mM and at pH 7.5. Although photolyase is retained by the nitrocellulose filters with near 100% efficiency, the binding efficiency of a single enzyme-substrate complex is about 0.34. The complexes can be dissociated by exposing them to photoreactivating light either in solution or on the filter.  相似文献   

13.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

14.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.  相似文献   

15.
By application of pulse radiolysis it was demonstrated that nitrogen dioxide (NO2.) oxidizes Gly-Tyr in aqueous solution with a strongly pH-dependent rate constant (k6 = 3.2 X 10(5) M-1 S-1 at pH 7.5 and k6 = 2.0 X 10(7) M-1 S-1 at pH 11.3), primarily generating phenoxyl radicals. The phenoxyl can react further with NO2. (k7 approximately 3 X 10(9) M-1 S-1) to form nitrotyrosine, which is the predominant final product in neutral solution and at low tyrosyl concentrations under gamma-radiolysis conditions. Tyrosine nitration is less efficient in acidic solution, due to the natural disproportionation of NO2., and in alkaline solutions and at high tyrosyl concentrations due to enhanced tyrosyl dimerization. Selective tyrosine nitration by interaction of NO2. with proteins (at pH 7 to 9) was demonstrated in the case of histone, lysozyme, ribonuclease A, and subtilisin Carlsberg. Nitrotyrosine developed slowly also under incubation of Gly-Tyr with nitrite at pH 4 to 5, where NO2. is formed by acid decomposition of HONO. It is recalled in this context that NO2.-induced oxidations, by regenerating NO2-, can propagate NO2./NO2- redox cycling under acidic conditions. Even faster than with tyrosine is the NO2.-induced oxidation of cysteine-thiolate (k9 = 2.4 X 10(8) M-1 S-1 at pH 9.2), involving the transient formation of cystinyl radical anions. The interaction of NO2. with Gly-Trp was comparably slow (k approximately 10(6) M-1 S-1), and no reaction was detectable by pulse radiolysis with Met-Gly and (Cys-Gly)2, or with DNA. Slow reactions of NO2. were observed with arachidonic acid (k approximately 10(6) M-1 S-1 at pH 9.0) and with linoleate (k approximately 2 X 10(5) M-1 S-1 at pH 9.4), indicating that NO2. is capable of initiating lipid peroxidation even in an aqueous environment. NO2.-Induced tyrosine nitration, using 50 microM Gly-Tyr at pH 8.2, was hardly inhibited, however, in the presence of 1 mM linoleate, and was not affected at all in the presence of 5 mM dimethylamine (a nitrosamine precursor). It is concluded that protein modifications, and particularly phenol and thiol oxidation, may be an important mechanism, as well as initiation of lipid peroxidation, of action of NO2. in biological systems.  相似文献   

16.
The kinetics of reaction of singly reduced methemoglobin (HbFe3(3+)Fe2+) with carbon monoxide have been investigated by the pulse radiolysis method. The rate constant for carbon monoxide binding to this form of hemoglobin is 4.1 X 10(6) M-1 S-1 at 24 degrees in our solutions. This value compares with existing values for various forms of hemoglobin ranging from 4 X 10(6) to 6.5 X 10(6) M-1 S-1. Addition of inositol hexaphosphate to the solutions results in a lower rate constant for carbon monoxide binding amounting to 1.1 X 10(5) M-1 S-1.  相似文献   

17.
Camphor binding to a possible receptor of rat olfactory epithelium has been studied within the ligand concentration range 10(-11)-10(-6) M. At these concentrations camphor is bound by a set of receptors. They are distinguished by both the affinity to the ligand (K1 = 5 X 10(-10) M, K2 = 3.5 X 10(-8) M, K3 approximately equal to 10(-6) M) and their amount in the epithelium. The differences in the affinities are due to different values of the association rate constant of camphor (k1), which varies from 10(6) M-1 X s-1 for the receptors with high affinity up to 2 X 10(2) M-1 X s-1 for those with low affinity. These data are discussed in terms of equilibrium and kinetic models of the receptor-stimulus interaction.  相似文献   

18.
The ability of adenyl-5'-yl imidodiphosphate (AMP-PNP), ADP, and PPi to dissociate the actin.myosin subfragment 1 (S-1) complex was studied using an analytical ultracentrifuge with UV optics, which enabled the direct determination of the dissociated S-1. At mu = 0.22 M, pH 7.0, 22 degrees C, with saturating nucleotide present, ADP weakens the binding of S-1 to actin about 40-fold (K congruent to 10(5) M-1), while both AMP-PNP and PPi weakens the binding about 400-fold (K congruent to 10(4) M-1). This 10-fold stronger dissociating effect of AMP-PNP and PPi compared to ADP correlates with our data showing that the binding of AMP-PNP and PPi to S-1 is about 10-fold stronger than the binding of ADP. In contrast, the binding constants of ADP, AMP-PNP, and PPi to acto.S-1 are nearly identical (K congruent to 5 x 10(3) M-1). At 4 degrees C, AMP-PNP has only a 3-fold stronger dissociating effect than ADP and, similarly, our data suggest that the binding of AMP-PNP and ADP to S-1 is quite similar at 4 degrees C. AMP-PNP and PPi are, therefore, somewhat better dissociating agents than ADP, but the difference among these three ligands is quite small. These data also show that actin and nucleotide bind to separate but interacting sites on S-1 and that the S-1 molecules bind independently along the F-actin filament with a binding constant of about 1 x 10(7) M-1 at 22 degrees C and physiological ionic strength.  相似文献   

19.
Both the kinetics of ferric chloroperoxidase reduction by dithionite and the binding of molecular oxygen to ferrous chloroperoxidase have been studied. The oxyferrous chloroperoxidase decays spontaneously to the ferric enzyme. In addition the corresponding rapid-scan spectra have been recorded. The reduction reaction is caused by SO-.2 with a rate constant of (7.7 +/- 1.0) X 10(4) M-1 S-1. Oxygen binding occurs with a rate constant of (5.5 +/- 1.0) X 10(5) M-1 S-1 over the pH range 3.5-6. Oxyferrous chloroperoxidase has a Soret absorption peak at 428 nm and two partially resolved peaks at 555 nm and 588 nm. Isosbestic points occur at the following wavelengths: between ferrous and oxyferrous chloroperoxidase at 419, 545, 555 and 580 nm; between oxyferrous and ferric chloroperoxidase at 419, 487, 540, 609 and 682 nm.  相似文献   

20.
We have measured the binding isotherms of C--A--C--C--A(3'NH)-[14C]Phe to the 70S ribosomes and 50S subunits of Escherichia coli and proposed a theoretical model for adsorption when cooperative interaction occurs between ligands that are adsorbed on ribosomes. Analysis of the experimental binding isotherms leads to the following conclusions. A ribosome (or subunit) binds two C--A--C--C--A(3'NH)-Phe molecules. The binding of C--A--C--C--A(3'NH)-Phe to a ribosome (or subunit) is a cooperative process, characterized by a cooperativity coefficient tau = 40 +/- 5 or more. The binding of C--A--C--C--A(3'NH)-AcPhe at the donor site of the peptidyltransferase center (association binding constant 1.5 X 10(6) M-1) and the binding of puromycin at the acceptor site also occur cooperatively with a coefficient of 10-25, the association binding constant of puromycin at the acceptor site being (1-2) X 10(4) M-1. The puromycin association binding constant at the donor site multiplied by the cooperativity coefficient of two interacting puromycin molecules absorbed on a ribosome equals 100-200 M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号