首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cdc2 protein kinase phosphorylates elongation factor-1 gamma (EF-1 gamma) during meiotic maturation of Xenopus oocytes. A synthetic peptide P2: PKKETPKKEKPA matching the cDNA-deduced sequence of EF-1 gamma was an in vitro substrate for cdc2 protein kinase and inhibited phosphorylation of EF-1 gamma. Tryptic hydrolysis of EF-1 gamma and the P2 peptide, both phosphorylated by cdc2 protein kinase, resulted in multiple partial digestion products generated by the presence of barely hydrolysable bonds. The two peptides obtained from the hydrolysis of EF-1 gamma comigrated exactly in two-dimensional separation with two of the P2 peptide hydrolysates. EF-1 gamma therefore contains one unique phosphoacceptor for cdc2 protein kinase, identified as threonine-230.  相似文献   

2.
Purified acetylcholine receptor is rapidly and specifically phosphorylated by partially purified protein kinase C, the Ca2+/phospholipid-dependent enzyme. The receptor delta subunit is the major target for phosphorylation and is phosphorylated on serine residues to a final stoichiometry of 0.4 mol of phosphate/mol of subunit. Phosphorylation is dose-dependent with a Km value of 0.2 microM. Proteolytic digestion of the delta subunit phosphorylated by either protein kinase C or the cAMP-dependent protein kinase yielded a similar pattern of phosphorylated fragments. The amino acids phosphorylated by either kinase co-localized within a 15-kDa proteolytic fragment of the delta subunit. This fragment was visualized by immunoblotting with antibodies against a synthetic peptide corresponding to residues 354-367 of the receptor delta subunit. This sequence, which contains 3 consecutive serine residues, was recently shown to include the cAMP-dependent protein kinase phosphorylation site (Souroujon, M. C., Neumann, D., Pizzighella, S., Fridkin, M., and Fuchs, S. (1986) EMBO J. 5, 543-546). Concomitantly, the synthetic peptide 354-367 was specifically phosphorylated in a Ca2+- and phospholipid-dependent manner by protein kinase C. Furthermore, antibodies directed against this peptide inhibited phosphorylation of the intact receptor by protein kinase C. We thus conclude that both the cAMP-dependent protein kinase and protein kinase C phosphorylation sites reside in very close proximity within the 3 adjacent serine residues at positions 360, 361, and 362 of the delta subunit of the acetylcholine receptor.  相似文献   

3.
We have further characterized the protein kinase C (PK-C) dependent phosphorylation of basic fibroblast growth factor (FGF). Intact recombinant basic FGF and a series of ten peptide fragments of basic FGF were phosphorylated by PK-C and the products were analyzed by SDS-PAGE and autoradiography. As expected, peptide fragments containing the known site of phosphorylation (Ser64) are substrates for phosphorylation. Surprisingly however, peptides containing the receptor binding domain of the mitogen [basic FGF(106-115)] are also phosphorylated. An examination of this sequence reveals the presence of a consensus sequence (Ser108-Ala109-Lys110) that mediates the reaction. Accordingly, all peptides that contain the core amino acids basic FGF(106-111) are substrates for phosphorylation. Peptide mapping of basic FGF confirms that Ser64 is the primary site of phosphorylation, suggesting that Ser108 is a cryptic consensus sequence. Because basic FGF is metabolized to sequence specific fragments after its binding and internalization into target cells, this cryptic site may in fact be phosphorylated in vivo.  相似文献   

4.
The regulatory beta-subunit of protein kinase CK2 mediates the formation of the CK2 tetrameric form and it has functions independent of CK2 catalytic subunit through interaction with several intracellular proteins. Recently, we have shown that CK2beta associates with the human checkpoint kinase Chk1. In this study, we show that Chk1 specifically phosphorylates in vitro the regulatory beta-subunit of CK2. Chymotryptic peptides and mutational analyses have revealed that CK2beta is phosphorylated at Thr213. Formation of a stable complex between CK2beta and Chk1 is not affected by the modification of Thr213 but it does require the presence of an active Chk1 kinase.  相似文献   

5.
The effect of halothane, a typical volatile anesthetic, on the calcium- and phospholipid-dependent protein kinase (PKC), which is one of the key enzymes of membrane signal transduction, was examined. PKC was partially purified from the cerebral tissue of male Wistar rats. Halothane increased PKC-mediated phosphorylation of calf thymus H1 histone in the presence or absence of phorbol ester or diolein, and also increased phosphorylation of the rat brain cytosolic proteins (47 kDa and 80 kDa). A similar but slight increase in H1 histone phosphorylation was observed with isoflurane and enflurane, less lipid soluble volatile anesthetics. These findings suggest that halothane may increase PKC-mediated phosphorylation by the modification of phospholipid membrane and affect membrane signal transduction of the nerve cell under the anesthetic state.  相似文献   

6.
Protein kinase C (PKC), a protein phosphorylating enzyme, is characterized by its need for an acidic phospholipid and for activators such as Ca2+ and diacylglycerol. The substrate commonly used in experiments with PKC is a basic protein, histone III-S, which needs the activators mentioned. However, protamine, a natural basic substrate for PKC, does not require the presence of cofactor/activator. We report here that protamine can induce the autophosphorylation of PKC in the absence of any PKC-cofactor or activator; this may represent a possible mechanism of cofactor-independent phosphorylation of this protein. It was investigated if protamine itself can act as a PKC-activator and stimulate histone phosphorylation in the manner of Ca2+ and phospholipids. Experiments however showed that protamine is not a general effector of PKC. On the contrary, histone stimulated PKC-mediated protamine phosphorylation and protamine-induced PKC-autophosphorylation. Histone alone did not induce PKC-autophosphorylation. Kinetic studies suggest that histone increases the maximal velocity (Vmax) of protamine kinase activity of PKC without affecting the affinity (Km). Other polycationic proteins such as polyarginine serine and polyarginine tyrosine were not found to influence PKC-mediated protamine phosphorylation, indicating that the observed effects are specific to histone, and are not general for all polycationic proteins. These results suggest that histone can modulate the protamine kinase activity of PKC by stimulating protamine-induced PKC-autophosphorylation.  相似文献   

7.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine.  相似文献   

8.
Ca2+-activated, phospholipid-dependent protein kinase recently found in mammalian tissues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J.Biol.Chem.254, 3692–3695) is able to phosphorylate five fractions of calf thymus histone. H1 histone serves as a preferential substrate, and approximately two moles of phosphate are incorporated into every mole of this histone. Analysis on the N-bromosuccinimide-bisected fragments of this radioactive histone has revealed that the enzyme phosphorylates preferentially seryl and threonyl residues located in the carboxyl-terminal half of this histone molecule.  相似文献   

9.
The use of polyethyleneimine-cellulose thin layer sheets to follow the phosphorylation of histone and decomposition of ATP catalyzed by an adenosine 3':5'-monophosphate (cyclic AMP)-stimulated protein kinase, protein kinase I, has made possible a more detailed analysis of the time course of these reactions than has been achieved previously be observing only recovered phosphorylated protein. When [gamma-32P] ATP was employed, significant error was introduced by the presence of 32Pi at the solvent front on these sheets, and this limited the accuracy of the available information. However, the analysis of assays performed with [U-14C] ATP was straightforward and appeared to have an accuracy comparable to that of the present standard assay. This appears to be the first use of [U-14C] ATP to assay protein kinases. Our physical characterization of protein kinase I showed it to be a homogeneous protein species by polyacrylamide gel electrophoresis, sodium dodecyl sulfate gel electrophoresis and analytical ultracentrifugation. Kinetic studies with protein kinase I indicated the absence of histone phosphatase and cyclic AMP phosphodiesterase activity. Furthermore, the ATPase activity seen is believed to be intimately associated with the protein kinase action, particularly in view of the observed dependence of the rate of Pi production on the presence of cyclic AMP. The kinetic data for the phosphorylation of histone catalyzed by protein kinase I under full stimulation by cyclic AMP are consistent with a double displacement mechanism.  相似文献   

10.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

11.
Thyroid protein kinase C (PKc) from cytosols of porcine and rat thyroid glands has been characterized using histone H1 or endogenous proteins as substrates. As in many other tissues histone H1 is by far the preferred exogenous substrate of thyroid PKc. Kinetic studies with H1 showed that, compared to rat thyroids, porcine glands are particularly rich in PKc, the predominant kinase activity in this tissue. The cAMP-dependent protein kinase (PKa) level, on the contrary, is very similar in both rat and porcine thyroids. Consequently, for the same type of tissue, there may be great species differences in the PKc level and the ratios between PKc and PKa kinase activities. Chromatographic properties of thyroid PKc are similar to those described in other tissues (one major peak followed by a small shoulder) except that elution of the main peak can vary depending on the nature of the salt gradient (approximately 55 mM for NaCl and 15 mM for sodium phosphate). In the first case PKc is completely separated from the PKa activity, in the second it is coeluted with the peak of PKa type I. The one-dimensional PAGE pattern of proteins phosphorylated by porcine PKc is very similar to the pattern obtained by rat enzyme. Protein bands of 18 kDa, 22-25 kDa and 32-36 kDa are specific substrates of the thyroid PKc, after in vitro phosphorylation of cytosol proteins. A great difference in Ca2+ requirement for PKc activation was noted, depending whether histone H1 or endogenous proteins were substrates. As in other tissues, calcium was absolutely necessary for phosphorylation of histone H1 by PKc. The addition of calcium was not absolutely necessary when endogenous proteins were the substrates, either for the activation of the enzyme or for phosphorylation of the PKc-specific substrates. Almost the same rate of phosphorylation was obtained with or without calcium in the incubation medium. However the one-dimensional PAGE pattern of phosphorylated proteins was different in the presence or absence of calcium. While addition of calcium was not absolutely necessary for the phosphorylation of a great number of proteins by the PKc, its presence was indispensable for the phosphorylation of certain endogenous substrates. However, calcium alone, in the absence of phospholipids had no effect on the phosphorylation of these proteins. Endogenous proteins, phosphorylated by the PKc only when calcium was present, were resolved by the two-dimensional PAGE into several distinct spots with molecular masses of 32-35 kDa and pI range of 5-7.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Analogs of a synthetic heptapeptide substrate corresponding to the sequence around a phosphorylation site in histone H2B were used to assess the substrate specificity of cGMP-dependent protein kinase. cGMP-dependent kinase phosphorylated the oligopeptide Arg-Lys-Arg-Ser32-Arg-Lys-Glu with favorable kinetic parameters as compared to those for cAMP-dependent kinase (Glass, D. B., and Krebs, E. G. (1979) J. Biol. Chem. 254, 9728-9738). The contribution of each amino acid to the ability of the peptide to be phosphorylated by cGMP-dependent or cAMP-dependent kinase was studied by replacement of individual residues and evaluation of the kinetic constants of the substituted peptides. Peptides containing acetylated lysine residues or nitroarginine residues were poor substrates for both kinases. Substitution of either arginine 29 or lysine 30 with alanine increased the Km values and decreased the Vmax values for both kinases. Substitution of lysine 34 with alanine increased the Vmax values for both kinases but did not affect the Km values for either enzyme. Substitution of the phosphorylatable serine with a threonine residue greatly depressed the Vmax for both kinases. Peptides in which arginine 31 or arginine 33 were replaced by an alanine residue revealed several apparent differences in the specificity requirements between cGMP-dependent and cAMP-dependent kinases.  相似文献   

13.
Identification of the protein kinase C phosphorylation site in neuromodulin   总被引:11,自引:0,他引:11  
E D Apel  M F Byford  D Au  K A Walsh  D R Storm 《Biochemistry》1990,29(9):2330-2335
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin [Alexander, K. A., Cimler, B. M., Meier, K. E., & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113], and we have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar Km values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [gamma-32P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32P-labeled tryptic peptide was generated from phosphorylated neuromodulin. The sequence of this peptide was IQASFR. The serine in this peptide corresponds to position 41 of the entire protein, which is adjacent to or contained within the calmodulin binding domain of neuromodulin. A synthetic peptide, QASFRGHITRKKLKGEK, corresponding to the calmodulin binding domain with a few flanking residues, including serine-41, was also phosphorylated by protein kinase C. We conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmodulin to neuromodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

15.
16.
The microtubule array in neuronal cells undergoes extensive growth, dynamics and rearrangements during neurite outgrowth. While little is known about how these changes are regulated, microtubule-associated proteins (MAPs) including tau protein are likely to perform an important role. Tau is one of the MAPs in mammalian brain. When isolated it is usually a mixture of several isoforms containing between 341 and 441 residues that arise from alternative splicing. Tau can be phosphorylated by several protein kinases. Phosphorylation at certain sites results in major structural and functional changes, as seen by changes in electrophoretic mobility, interaction with microtubules, molecular length and elasticity. Here we show that the sites of phosphorylation by four kinases (PKA, PKC, CK and CaMK) all lie in the C-terminal microtubule-binding half of tau, but only the phosphorylation by CaM kinase shows the pronounced shift in electrophoretic mobility characteristic for tau from Alzheimer neurofibrillary tangles. By using a combination of limited proteolysis, protein sequencing and protein engineering we show that a single phosphorylation site is responsible for this shift, located at Ser 405 in the C-terminal tail of the protein outside the region of internal repeats. Phosphorylation at this site not only reduces the electrophoretic mobility of tau, it also makes the protein long and stiff, as shown earlier. The site is likely to be phosphorylated in tau from Alzheimer neurofibrillary tangles.  相似文献   

17.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

18.
Phosphorylation of caldesmon by protein kinase C   总被引:4,自引:0,他引:4  
Protein kinase C catalyzes phosphorylation of caldesmon, an F-actin binding protein of smooth muscle, in the presence of Ca2+ and phospholipid. Protein kinase C incorporates about 8 mol of phosphate/mol of chicken gizzard caldesmon. When calmodulin was added in the medium, there was an inhibition of phosphorylation. The fully phosphorylated, but not unphosphorylated, caldesmon inhibited myosin light chain kinase activity. The possibility that protein kinase C plays some role in smooth muscle contractile system through caldesmon, warrants further attention.  相似文献   

19.
1. The human erythrocyte glucose transporter was phosphorylated in vitro by protein kinase C. 2. Tryptic cleavage of phosphorylated native transporter produced two major unphosphorylated membrane-embedded fragments weighing 23 and 19 kDa and released numerous water-soluble peptides. 3. Ion-exchange FPLC of the soluble tryptic peptides resolved the mixture into two phosphopeptide peaks. 4. Tryptic digestion of glucose transporter that was phosphorylated in vivo in response to phorbol esters produced soluble phosphopeptides that eluted at identical salt concentrations. 5. Proteolytic digestion and peptide mapping of the transporter revealed that the site(s) of phosphorylation lie within the large cytoplasmic domain that bisects the molecule.  相似文献   

20.
Reserpine, a Rauwolfia alkaloid, was shown to increase activity of the hepatic nitrogen metabolizing enzymes xanthine dehydrogenase, purine nucleoside phosphorylase, and tyrosine aminotransferase, when administered orally to young chicks. Using immunochemical techniques, this increase in xanthine dehydrogenase was shown to result from an enhanced de novo enzyme synthesis. The response pattern of the three enzymes to reserpine follows the same pattern to induction by high dietary protein suggesting that a common mode of action may be involved in the regulation of these enzymes. Alpha-Adrenergic blockers, phentolamine and phenoxybenzamine, effectively prevented the increased enzyme activities caused by administration of reserpine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号