共查询到20条相似文献,搜索用时 0 毫秒
1.
The construction of several recombinant plasmid derivatives containing novel triple-block DNA sequence insertions is described. The protocol for these constructions involves synthesis of a heterogenous mixture of block oligomer duplexes, : formula: (see text), using pancreatic deoxyribonuclease and terminal transferase. The synthetic duplexes were mixed with linearized and dG-tailed vectors and the DNA mixture used to transform E. coli. Triple-block sequences of the type dGidAjdCk.dGkdTjdCi, characterized by DNA sequencing, were inserted into the Bam HI site of pBR322 and next to the lac wild-type and UV5 promoter regions in pRW26 and pRW28. Similarly, sequences were inserted into the Sma I site of pACYC189 and could be excised by cleavage with Sma I since the procudure regenerates the recognition site. The approach provides a technique for the synthesis of a large family of defined sequence triple-block polymers in essentially unlimited amounts. Although these inserts contain sequences which have the potential for forming stable hairpin structures, the recombinant plasmids are stable and appear to replicate normally. 相似文献
2.
A E Veenstra P van Solingen R A Bovenberg L H van der Voort 《Journal of biotechnology》1991,17(1):81-90
The penDE gene from Penicillium chrysogenum has been isolated; the gene is located in close vicinity of the pcbC gene. Amplification of the pcbC-penDE gene cluster in Penicillium chrysogenum Wis54-1255 leads to a significant increase in penicillin production. In selected transformants an increase of up to 40% is observed. 相似文献
3.
4.
G Daum N F Zander B Morse D Hurwitz J Schlessinger E H Fischer 《The Journal of biological chemistry》1991,266(19):12211-12215
The receptor-linked tyrosine phosphatase RPTP alpha from human brain (Kaplan, R., Morse, B., Huebner, K., Croce, C., Howk, R., Ravera, M., Ricca, G., Jaye, M., and Schlessinger, J. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7000-7004) was expressed in insect cells following infection with recombinant baculovirus. Two major forms of the enzyme, with molecular sizes of 98 kDa and 114 kDa, were detected by immunoblot analysis. This heterogeneity could be ascribed to N-linked glycosylation on the basis of two lines of evidence; namely, blockage of glycosylation with tunicamycin in vivo and removal of carbohydrates by endoglycosidase F in vitro. The 114-kDa form was purified to homogeneity by chromatography on Superose 12 and Mono Q. Compared to the low Mr placenta and T-cell tyrosine phosphatases, RPTP alpha displayed a low optimum pH of 6 and a high Km in the micromolar range toward two artificial substrates (tyrosyl-phosphorylated myelin basic protein and modified lysozyme, respectively). Most effectors had a different and often an opposite influence on phosphatase activity depending on the nature of the substrate and the pH at which the assays were performed. Determination of Km and Vmax values for RPTP alpha suggests that the enzyme could exist in low and high substrate affinity states. 相似文献
5.
Biologically active recombinant formed through DNA pairing by purified recA protein in vitro 总被引:1,自引:0,他引:1
Hisao Masukata Tomoko Fujii Tomoko Ogawa Hideyuki Ogawa 《Molecular & general genetics : MGG》1983,189(2):226-234
Summary We have detected in vitro homologous recombination mediated by purified recA protein of Escherichia coli as a recombinant phage produced by using the DNA packaging system of phage . When double-stranded DNA of phage carrying amber mutations is incubated with double-stranded DNA carrying the wild-type genes in the presence of recA protein, Mg++ and ATP, and the DNA packaged, amber
+ recombinant phage is produced at a high frequency. This reaction depends completely upon the function of the wild-type recA protein. After incubation of 32P-labeled linear DNA (Form III) with bromouracil-labeled circular DNA (Form I-Form II mixture) in the presence of recA protein, Mg++ and ATP, about 10% of the 32P-counts band at an intermediate density in CsCl equilibrium gradient. This fraction yields a high percentage of the recombinant phage after DNA packaging and shows the -shaped and -shaped joint molecules of linear and circular DNA under the electron microscope. Furthermore, we demonstrate that a non-homologous region inhibits the recombination reaction when it is between the marker concerned and the closer cos end. Our results indicate thatrecA protein acts directly in the initial step of recombination to join the homologous double-stranded DNA and that the resulting molecule can be matured into the recombinant DNA.Abbreviations kb
kilobase pairs
- PFU
plaque forming units
- Form I
superhelical closed circular DNA
- Form II
open circular DNA
- Form III
linear DNA 相似文献
6.
7.
H Sasaki Y Sakaki H Matsuo I Goto Y Kuroiwa I Sahashi A Takahashi T Shinoda T Isobe Y Takagi 《Biochemical and biophysical research communications》1984,125(2):636-642
A calmodulin dependent cyclic nucleotide phosphodiesterase is associated with the head and tailpieces of demembranated rat caudal epididymal sperm. The phosphodiesterase was stimulated two-fold in the presence of Ca2+, while the simultaneous addition of Ca2+ and calmodulin resulted in a four-fold increase in activity. Ca2+ stimulation was abolished if demembranated sperm were extracted with EGTA and was recovered upon the addition of exogenous calmodulin. Micromolar levels of Ca2+ were required for full stimulation. Trifluoperazine inhibited the Ca2+ stimulated enzyme in a dose dependent manner (ID50 = 50 microM) but had no effect on the basal phosphodiesterase activity. 相似文献
8.
9.
10.
An abnormal isoform, PrP(Sc), of the normal cellular prion protein (PrP(C)) is the major component of the causative agent of prion diseases. Both isoforms were found to possess the same covalent structures, including a C-terminal glycosylphosphatidylinositol anchor, but different secondary and tertiary structures. In this study, a variant of full-length PrP with an unpaired cysteine at the C terminus was recombinantly produced in Escherichia coli, covalently coupled to a thiol-reactive phospholipid, and incorporated into liposomes to serve as a model for studying possible changes in structure and stability of recombinant PrP upon membrane attachment. Covalent coupling of PrP to liposomes did not result in significant structural changes observable by far-UV circular dichroism. Moreover, limited proteolysis experiments failed to detect changes in the stability of liposome-bound PrP relative to soluble PrP. These data suggest that the requirement of raft localization for the PrP(C) to PrP(Sc) conversion, observed previously in cell culture models, is not because of a direct influence of raft lipids on the structure and stability of membranebound PrP(C) but caused by other factors, e.g. increased local PrP concentrations or high effective concentrations of membrane-associated conversion factors. The availability of recombinant PrP covalently attached to liposomes provides the basis for systematic in vitro conversion assays with recombinant PrP on the surface of membranes. In addition, our results indicate that the three-dimensional structure of mammalian PrP(C) in membranes is identical to that of recombinant PrP in solution. 相似文献
11.
Characterization of a mitochondrial protein binding to single-stranded DNA. 总被引:7,自引:3,他引:4 下载免费PDF全文
A DNA-binding protein from Xenopus laevis oocyte mitochondria which has been found associated with the D-loop also shows a strong preference for single-stranded DNA. The binding to polynucleotides is dependent on the base composition, but no sequence specificity was found. This protein, called mtSSB, binds tightly and cooperatively to single-stranded DNA. By its amino-acid composition and its binding properties it appears to be similar to the single-stranded DNA-binding proteins found in prokaryotes. 相似文献
12.
By using electromobility shift assay (EMSA), we have identified a protein able to recognize the DNA only if it was previously reacted with minor groove binders. This protein binds with very high affinity AT containing DNA treated with minor groove binders such as distamycin A, Hoechst 33258 and 33342, CC-1065 and ethidium bromide minor groove intercalator, but not with major groove binders such as quinacrine mustard, cisplatin or melphalan, or with topoisomerase I inhibitor camptothecin or topoisomerase II inhibitor doxorubicin. This protein was found to be present in different extracts of human, murine and hamster cells, with the human protein which appears to have a molecular weight slightly lower than that of the other species. This protein was found to be expressed both in cancer and normal tissues. By using molecular ultrafiltration techniques as well as southwestern analysis it was estimated that the apparent molecular weight is close to 100 kDa. We can exclude an identity between this protein and other proteins, with a similar molecular weight previously reported to be involved in DNA damage recognition/repair, such as topoisomerase I, mismatch repair activities such as the prokaryotic MutS protein and its human homologue hMSH2 or proteins of the nucleotide excision repair system such as ERCC1, -2, -3 and -4. 相似文献
13.
COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation 下载免费PDF全文
Roudier F Fernandez AG Fujita M Himmelspach R Borner GH Schindelman G Song S Baskin TI Dupree P Wasteneys GO Benfey PN 《The Plant cell》2005,17(6):1749-1763
The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis. 相似文献
14.
A new protein kinase has been characterized among the proteins tightly bound to rat liver DNA and released by DNase I and RNase A treatment. This enzyme was separated by gel filtration from this released material. Its apparent molecular mass was found to be 34 kDa and it is made of a single unit. The main characteristic of this protein kinase is that it is arginine-specific. Isolation of phosphoarginine required the use of proteolytic enzymes at alkaline pH since the phosphate bond is highly acid-labile. This protein kinase is able to autophosphorylate and to phosphorylate a single chromosomal protein of 11 kDa also tightly bound to DNA. It uses ATP and dATP as phosphate donors and is cAMP-independent. Its optimal activity requires Mn2+ ions. Vanadate, spermine and heparin have no effect on its activity. 相似文献
15.
A. J. Levine P. C. van der Vliet B. Rosenwirth C. Anderson J. Rabek A. Levinson S. Anderson 《Molecular and cellular biochemistry》1976,11(2):79-95
1. The human adenoviruses types 2, 5 and 12 code for the production of a single strand specific DNA binding protein. The molecular weights of these proteins were 72,000 for types 2 and 5 and 60,000 for type 12. In all three cases proteolytic breakdown fragments of these binding proteins (48,000 MW) were also observed. 2. Analysis of the methionine containing tryptic peptides of these proteins indicate that the types 2 and 5 proteins are similar and clearly distinguishable from the type 12 protein. The peptide maps of these three viral proteins are clearly different from a similar protein found in mock infected cells. 3. Temperature sensitive mutants of type 5 (H5ts125) and type 12(H12tsA275) adenoviruses fail to produce these proteins at the nonpermissive temperature. H5ts125 infected cells grown at the permissive temperature produce a 72,000 MW protein that is thermolabile, for continued binding to DNA, when compared to type 5 wild type adenovirus 72,000 MW protein. An analysis of the phenotype of this adenovirus mutant indicates that it codes for a viral function at early times after infection that is required for viral DNA replication. 4. The in vitro translation of adenovirus specific m-RNA results in the synthesis of a small amount of a 72,000 MW protein that binds to single stranded DNA just like the authentic adenovirus DNA binding proteins produced in infected cells. 5. Adenovirus anti-Tumor antigen (T) anti-serum from hamsters carrying independently derived adenovirus tumors, have been tested for the presence of antibody to purified DNA binding proteins. One antiserum is positive for these antibodies while the other is negative. These results indicate that some, but not all, adenovirus tumors contain large enough levels of the DNA binding proteins to elicit an antibody response. 6. The type 5 adenovirus temperature sensitive mutant, H5ts125, that codes for a thermolabile DNA binding protein, was complemented or suppressed at the nonpermissive temperature, for the replication of adenovirus DNA, by SV40. SV40tsA temperature sensitive mutants, defective in SV40 DNA replication, do not suppress or complement H5ts125 at the nonpermissive temperature. 相似文献
16.
We have recently isolated two Arabidopsis thaliana DNA hypomethylation mutations, identifying the DDM1 locus, that cause a 70% reduction in genomic 5-methylcytosine levels [1]. Here we describe further phenotypic and biochemical characterization of the ddm1 mutants. ddm1/ddm1 homozygotes exhibited altered leaf shape, increased cauline leaf number, and a delay in the onset of flowering when compared to non-mutant siblings in a segregating population. Our biochemical characterization investigated two possible mechanisms for DNA hypomethylation. In order to see if ddm1 mutations affect DNA methyltransferase function, we compared DNA methyltransferase activities in extracts from wild-type and ddm1 mutant tissues. The ddm1 mutant extracts had as much DNA methyltransferase activity as that of the wild-type for both the CpI and CpNpG substrates suggesting that the DDM1 locus does not encode a DNA methyltransferase. Moreover, the ddm1 mutations did not affect the intracellular level of S-adenosylmethionine, the methyl group donor for DNA methylation. The possibility that the DDM1 gene product functions as a modifier of DNA methylation is discussed. 相似文献
17.
Megabase methods: a quantum jump in recombinant DNA techniques 总被引:1,自引:0,他引:1
B R Jordan 《BioEssays : news and reviews in molecular, cellular and developmental biology》1988,8(5):140-145
Until quite recently, recombinant DNA technology was not able to deal with DNA molecules larger than 20–40 kb. This is a serious limitation for the study of mammalian, and in particular human genomes whose total length is approx. 3 × 106 kb, since the best resolution of genetic and chromosomal analysis is usually the rough equivalent of 1000–5000 kb. Three recently developed methods promise to bridge this gap: pulsed field gel electrophoresis, which can analyze megabase-sized DNA fragments; cloning in yeast, which can clone and propagate DNA fragments of several hundred kb; and jumping libraries, which allow ‘jumping’ over large distances along the chromosome. This review presents the current status of these very promising technologies. 相似文献
18.
Characterization of the DNA binding properties of polyomavirus capsid protein. 总被引:4,自引:8,他引:4 下载免费PDF全文
The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region. 相似文献
19.
Brigitte Dauce-Le Reverend Michèle Boitel Alain M. Deschamps Jean-Michel Lebeault Konosuke Sano Koichi Takinami Jean-Claude Patte 《Applied microbiology and biotechnology》1982,15(4):227-231
Summary Several genes of the lysine biosynthetic pathway were cloned separately on the high copy number plasmid pBR322 (Richaud et al. 1981). These hybrid plasmids were used to transform an Escherichia coli strain TOC R 21 that overproduces lysine due to mutations altering the aspartokinase reaction. The synthesis of lysine was studied in these different strains. It appears that only plasmids containing the dapA gene (encoding dihydrodipicolinate synthetase) lead to an increase in lysine production. This result allows us to identify this reaction as the limiting biosynthetic step in strain TOC R 21 and indicates that such a method of gene amplification can be used to improve strains overproducing metabolites. 相似文献
20.
Y Fujiwara C Masutani T Mizukoshi J Kondo F Hanaoka S Iwai 《The Journal of biological chemistry》1999,274(28):20027-20033
The UV-damaged DNA-binding (UV-DDB) protein is the major factor that binds DNA containing damage caused by UV radiation in mammalian cells. We have investigated the DNA recognition by this protein in vitro, using synthetic oligonucleotide duplexes and the protein purified from a HeLa cell extract. When a 32P-labeled 30-mer duplex containing the (6-4) photoproduct at a single site was used as a probe, only a single complex was detected in an electrophoretic mobility shift assay. It was demonstrated by Western blotting that both of the subunits (p48 and p127) were present in this complex. Electrophoretic mobility shift assays using various duplexes showed that the UV-DDB protein formed a specific, high affinity complex with the duplex containing an abasic site analog, in addition to the (6-4) photoproduct. By circular permutation analyses, these DNA duplexes were found to be bent at angles of 54 degrees and 57 degrees in the complexes with this protein. From the previously reported NMR studies and the fluorescence resonance energy transfer experiments in the present study, it can be concluded that the UV-DDB protein binds DNA that can be bent easily at the above angle. 相似文献