首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Adenovirus-induced inhibition of cellular DNase.   总被引:7,自引:4,他引:3       下载免费PDF全文
During the productive infection of KB cells by adenovirus type 5 (Ad5), there is a progressive decrease in the level of cellular DNase activity towards single-stranded DNA, in contrast to DNA polymerase which remains relatively constant throughout the infection. This decrease is prevented by the inhibition of protein synthesis by cycloheximide. The inhibition of DNase activity does not occur after infection by Ad5 ts125, a DNA-negative mutant which fails to induce the adenovirus-specific DNA binding protein. In contrast, infection by Ad5 ts36, a DNA-negative mutant which complements ts125, does result in decreased levels of DNase. A mechanism is discussed in which the DNA binding protein protects viral replicative intermediates from degradation by cellular DNase.  相似文献   

2.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

3.
The properties of a naturally occurring temperature-sensitive (ts) mutant of human adenovirus type 7 (Ad7) were studied. Mutant Ad7 (19), or E46-, was the nonhybrid adenovirus component derived from the defective simian virus 40 (SV40)-Ad7 hybrid (PARA). Growth of the mutant was restricted at 40.5 degrees C, and the ratios of virus yields in KB cells at 40.5 and 33 degrees C were 10(-2) to 10(-3). Viral DNA synthesis and the synthesis of adenovirus-specific antigens (tumor, capsid, hexon, and penton antigens) appeared normal at the restrictive temperature. The assembly of virus particles was aberrant, as determined by thin-section of infected cells. The infectivity of mutant virions was heat labile at 50 degrees C, suggesting a ts defect in a structural component of the viron. Analysis by polyacrylamide gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in mutant-infected cells suggested that at least the major virion polypeptides were synthesized at the restrictive temperature. A lack of inhibition of host protein synthesis late in mutant infections, as compared with wild-type (WT) infections at both the permissive and nonpermissive temperatures, made quantitation of infected-cell polypeptides difficult. Analysis of the assembly of capsomeres from cytoplasmic extracts of infected cells on sucrose gradients and by non-dissociating polyacrylamide gel electrophoresis suggested that hexon capsomeres were made at 40.5 degrees C. The hexon capsomeres made by the mutant at either 33 or 40.5 degrees C displayed a decreased migration in the non-dissociating gels compared with the WT hexon capsomeres. The molecular weights of the mutant and WT hexon polypeptides were identical. These results suggest that the ts lesion of this group B human Ad7 mutant may be reflected in altered hexons. The mutant Ad7 interfered with the replication of adenovirus types 2 and 21 at the elevated temperature.  相似文献   

4.
The major DNA-binding protein encoded by several temperature-sensitive mutants of herpes simplex virus type 1 was thermolabile for binding to intracellular viral DNA. The ability of DNase I to release this protein from isolated nuclei was used as a measure of the amount of protein bound to viral DNA. This assay was based upon our previous observation that the fraction of herpesviral DNA-binding protein which can be eluted from nuclei with DNase I represents proteins associated with progeny viral DNA (D. M. Knipe and A. E. Spang, J. Virol. 43:314-324, 1982). In this study, we found that several temperature-sensitive mutants encoded proteins which rapidly chased from a DNase I-sensitive to a DNase I-resistant nuclear form upon shift to the nonpermissive temperature. We interpret this change in DNase I sensitivity to represent the denaturation of the DNA-binding site at the nonpermissive temperature and the association with the nuclear framework via a second site on the protein. The DNA-binding activity measured by the DNase I sensitivity assay represents an important function of the protein in viral replication because three of five mutants tested were thermolabile for this activity. A fourth mutant encoded a protein which did not associate with the nucleus at the nonpermissive temperature and therefore would not be available for DNA binding in the nucleus. We also present supportive evidence for the binding of the wild-type protein to intracellular viral DNA by showing that a monoclonal antibody coprecipitated virus-specific DNA sequences with the major DNA-binding protein.  相似文献   

5.
The major herpes simplex virus DNA-binding protein, ICP8, was purified from cells infected with the herpes simplex virus type 1 temperature-sensitive strain tsHA1. tsHA1 ICP8 bound single-stranded DNA in filter binding assays carried out at room temperature and exhibited nonrandom binding to single-stranded bacteriophage fd DNA circles as determined by electron microscopy. The filter binding assay results and the apparent nucleotide spacing of the DNA complexed with protein were identical, within experimental error, to those observed with wild-type ICP8. Thermal inactivation assays, however, showed that the DNA-binding activity of tsHA1 ICP8 was 50% inactivated at approximately 39 degrees C as compared with 45 degrees C for the wild-type protein. Both wild-type and tsHA1 ICP8 were capable of stimulating viral DNA polymerase activity at permissive temperatures. The stimulatory effect of both proteins was lost at 39 degrees C.  相似文献   

6.
The group C adenoviruses code for a single-strand specific DNA-binding protein of molecular weight 72,000 daltons which is synthesized at early times after productive viral infection. Experiments were designed to determine whether this single-strand specific DNA-binding protein was expressed in adenovirus tumors and transformed cells.Two independently derived preparations of antisera from hamsters bearing group C adenovirus tumors were tested for antibody against the single-strand DNA-binding proteins. One antiserum contained antibodies that reacted with these DNA-binding proteins, while the second antiserum did not contain detectable levels of antibody. Five adenovirus type 2 transformed rat cell lines were tested for the presence of the single-strand specific DNA-binding proteins. Two of the five transformed cells expressed detectable levels of this protein. These results indicate that the group C adenovirus single-strand specific DNA-binding proteins are expressed in some, but not all, adenovirus tumors and transformed cell lines.Those transformed cell lines (type 2) containing a portion of the adenovirus genome designated by the Eco R-I-B restriction enzyme fragment express the single-strand specific DNA-binding proteins. Those cell lines missing this Eco R-I-B fragment do not contain this viral protein. Other experiments have located the structural gene of the single-strand specific DNA-binding protein in the Eco R-I-B DNA fragment, indicating that when this gene is present in a transformed cell, it is expressed.  相似文献   

7.
Cholesterol sulfate (CS) and sulfatides in the epithelium of the digestive tract were found in the 1000xg supernatants of digestive fluid, particularly in gastric juices containing the duodenal contents and bile acids, there being 14-131 microg of CS and 3-54 microg of sulfatides per mg of protein in the fluid, respectively. CS and sulfatides dissolved in detergents including bile acids inactivated pancreatic trypsin to the same level as by DMSO-solubilized sulfated lipids at 37 degrees C. Similarly, pancreatic DNase I was inhibited by CS solubilized with DMSO or bile acids, but not by sulfatides or other membrane lipids at 37 degrees C. Both the sulfate group and the hydrophobic side chain of CS were indispensable structures for the inhibition of DNase I. Also, the optimum molar ratio of bile acids to CS was important for expression of the inhibitory activity of CS toward DNase I, it being 0.18 of the optimum ratio for sodium taurocholate, and the molar ratio of CS to DNase I for complete inhibition was 342:1. Thus, CS was shown to play a role as an epithelial inhibitor of DNase I in concert with bile acids.  相似文献   

8.
The adenovirus-specific DNA-binding protein (DBP) has been shown to inhibit the hydrolysis of single-stranded DNA by a DNase isolated from KB cells, (Nass, K., and Frenkel, G.D. (1980). J. Virol. 35, 314–319). The specificity of the inhibition has now been investigated. The DBP inhibits the hydrolysis of single-stranded DNA by several different DNases (DNase II, KB DNase, S1 nuclease) under a variety of reaction conditions, but it has no effect on DNase I-catalyzed hydrolysis of single-stranded DNA. The DBP also inhibits the rate of hydrolysis of double-stranded DNA by KB DNase and DNase II, but has no effect on DNase I-catalyzed hydrolysis of this substrate. The DBP also inhibits the dephosphorylation of 5′-phosphoryl-terminated DNA by bacterial alkaline phosphatase but stimulates the phosphorylation of 5′-hydroxyl-terminated DNA by polynucleotide kinase.  相似文献   

9.
An adenovirus type 5 mutant, designated H5ilE4I, was constructed in which region E4 was replaced by a cloned cDNA. The cDNA was a copy of an mRNA which exclusively contains open translational reading frames 6 and 7. The phenotype of the mutant was compared with that of the previously characterized E4 mutant H2dl808 and wild-type adenovirus 5. Although the H5ilE4I mutant lacked at least five E4 genes, it was nondefective for growth in HeLa cells. The defects in viral DNA replication, late protein synthesis, and shutoff of host cell protein synthesis associated with the phenotype of the H2dl808 mutant were not observed in HeLa cells infected with the H5ilE4I mutant. However, differences were observed regarding the time of onset of viral DNA replication and the accumulation of the hexon polypeptide as well as the 72-kilodalton adenovirus-specific DNA-binding protein. The results thus indicate that open reading frame 6 or 7 or both contain all genetic information required for viral replication in tissue culture cells, whereas another E4 gene modulates the accumulation of certain viral polypeptides. The early onset of viral DNA replication in H5ilE4I-infected cells may be an indirect effect of the enhanced expression of the 72-kilodalton DNA-binding protein.  相似文献   

10.
Studies were done to characterize a DNA-negative temperature-sensitive (ts) mutant of human adenovirus type 2, H2 ts111. The temperature-sensitive defect, which was reversible on shift-down in the absence of protein synthesis, was expressed as early as 2 h postinfection, and the results of density-labeling experiments are in agreement with at least a DNA replication initiation block. On shift-up, after allowing viral DNA synthesis at permissive temperatures, the newly synthesized viral DNA and the mature viral DNA were cleaved into fragments which sedimented as a broad peak with a mean coefficient of 10-12S. This cleavage was more marked in the presence of hydroxyurea as the DNA synthesis inhibitor. Parental DNA in infected cells was degraded to a much lesser extent regardless of the incubation temperature. In contrast, the parental DNA was strongly degraded when early gene expression was permitted at 33 degrees C before shift-up to 39.5 degrees C. Furthermore, cellular DNA was also degraded at 39.5 degrees C in ts111-infected cells, the rate of cleavage being related to the multiplicity of infection. This cleavage effect, which did not seem to be related to penton base-associated endonuclease activity, was also enhanced when early gene expression was allowed at 33 degrees C before shift-up. The ts111 defect, which was related to an initiation block and endonucleolytic cleavage of viral and cellular DNA, seemed to correspond to a single mutation. The implication of the ts111 gene product in protection of viral and cellular DNA by way of a DNase-inhibitory function is discussed.  相似文献   

11.
Repair of thermal damage to the Escherichia coli nucleoid.   总被引:4,自引:0,他引:4       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after heat treatment (30 min at 50 degrees C) and subsequent incubation of cells at 37 degrees C for various times. Heat treatment resulted in in vivo association of the nucleoids with cellular protein and in an increase in sedimentation coefficient. During incubation at 37 degrees C, a fraction of the nucleoids, from heated cells, because dissociated from cellular protein and regained their characteristic sedimentation coefficients. The percentage of nucleoids which returned to their control sedimentation position in the sucrose gradients corresponded to the percentage of cells able to repair thermal damage as assayed by enumeration on agar plates.  相似文献   

12.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

13.
Fifty temperature-sensitive mutants, which replicate at 32 degrees C but not at 39.5 degrees C, were isolated after mutagenesis of the vaccine strain of adenovirus type 7 with hydroxylamine (mutation frequency of 9.0%) or nitrous acid (mutation frequency of 3.8%). Intratypic complementation analyses separated 46 of these mutants into seven groups. Intertypic complementation tests with temperature-sensitive mutants of adenovirus type 5 showed that the mutant in complementation group A failed to complement H5ts125 (a DNA-binding protein mutant), that mutants in group B and C did not complement adenovirus type 5 hexon mutants, and that none of the mutants was defective in fiber production. Further phenotypic characterization showed that at the nonpermissive temperature the mutant in group A failed to make immunologically reactive DNA-binding protein, mutants in groups B and C were defective in transport of trimeric hexons to the nucleus, mutants in groups D, E, and F assembled empty capsids, and mutants in group G assembled DNA-containing capsids as well as empty capsids. The mutants of the complementation groups were physically mapped by marker rescue, and the mutations were localized between the following map coordinates: groups B and C between 50.4 and 60.2 map units (m.u.), groups D and E between 29.6 and 36.7 m.u., and group G between 36.7 and 42.0 m.u. or 44.0 and 47.0 m.u. The mutant in group A proved to be a double mutant.  相似文献   

14.
15.
5'-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56 degrees C for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37 degrees C for 1 h and it was destroyed completely by heating at 100 degrees C for 30 min. When the heated (56 degrees C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-beta-D-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5'-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data suggest that the inhibiting activity is due to a protein(s) that is not a protease. The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35,000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. The present study suggest that the previously reported undetectability of 5'-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5'-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5'-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.  相似文献   

16.
The adenovirus single-stranded DNA-binding protein (DBP) is an essential factor in viral DNA replication. Three temperature-sensitive (ts) adenoviruses (Ad2+ND1ts23, Ad2ts111A, and Ad5ts125) are known to have single amino acid substitutions in their DBPs that result in defective DNA replication at the nonpermissive temperature. To elucidate the mechanism(s) involved in the ts phenotype, we purified the three mutant DBPs and studied their DNA-binding properties and their ability to support DNA replication in an in vitro system. The results confirm that the three ts DBPs were incapable of supporting DNA replication at the nonpermissive temperature (40 degrees C). The defect was found at both the initiation and elongation steps of DNA replication. The 2-fold stimulation of pTP.dCMP formation by the DBP was lost by prior heating of the ts DBPs. The pronounced effect of the DBP on the early elongation process was severely diminished, but not abolished, by prior heating to 40 degrees C. The functional change at 40 degrees C was irreversible, as the ts DBPs preincubated at 40 degrees C were no longer active when assayed at 30 degrees C. Upon heating to 40 degrees C, all three ts DBPs lost their ability to bind to oligonucleotides, although they still retained some binding activity for large single-stranded DNAs such as M13 DNA. Thus, the inability of these three ts DBPs to support DNA replication is attributable to their altered DNA-binding properties.  相似文献   

17.
18.
J Bosher  A Dawson    R T Hay 《Journal of virology》1992,66(5):3140-3150
During the S phase of the eukaryotic cell cycle and in virus-infected cells, DNA replication takes place at discrete sites in the nucleus, although it is not clear how the proteins involved in the replicative process are directed to these sites. Nuclear factor I is a cellular, sequence-specific DNA-binding protein utilized by adenovirus type 2 to facilitate the assembly of a nucleoprotein complex at the viral origin of DNA replication. Immunofluorescence experiments reveal that in uninfected cells, nuclear factor I is distributed evenly throughout the nucleus. However, after a cell is infected with adenovirus type 2, the distribution of nuclear factor I is dramatically altered, being colocalized with the viral DNA-binding protein in a limited number of subnuclear sites which bromodeoxyuridine pulse-labeling experiments have identified as sites of viral DNA replication. Experiments with adenovirus type 4, which does not require nuclear factor I for viral DNA replication, indicate that although the adenovirus type 4 DNA-binding protein is localized to discrete nuclear sites, this does not result in the redistribution of nuclear factor I. Localization of nuclear factor I to discrete subnuclear sites is therefore likely to represent a specific targeting event that reflects the requirement for nuclear factor I in adenovirus type 2 DNA replication.  相似文献   

19.
20.
Adenovirus DNA replication was studied in vitro in nuclear extracts prepared from HeLa cells infected at the permissive temperature with H5ts125, H5ts36, or H5ts149, three DNA-negative mutants belonging to two different complementation groups. At the restrictive temperature, H5ts125 extracts, containing a thermolabile 72-kilodalton DNA-binding protein, enable the formation of an initiation complex between the 82-kilodalton terminal protein precursor (pTP) and dCTP, but further elongation of this complex is inhibited. Wild-type DNA-binding protein or a 47-kilodalton chymotryptic DNA-binding fragment can complement the mutant protein in the elongation reaction. No difference in heat inactivation was observed between wild-type extracts and H5ts36 or H5ts149 extracts when the replication of terminal XbaI fragments of adenovirus type 5 DNA-terminal protein complex was studied. In contrast, the formation of a pTP-dCMP initiation complex, as well as the partial elongation reaction up to nucleotide 26, were consistently more temperature sensitive in mutant extracts. The results suggest that the H5ts36/H5ts149 gene product is required for initiation of adenovirus type 5 DNA replication and that the 72-kilodalton DNA-binding protein functions early in elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号