首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature-sensitive ts A1S9 mouse L-cell mutant is defective in an X-linked gene essential for progression of cells through the S phase of the cell division cycle. A single copy fragment derived from the complementing human A1S9 gene was used as a probe to localize the gene on the X chromosome. Southern blot analysis of human x rodent hybrids and in situ hybridization to human metaphase chromosomes allowed the regional assignment of the human A1S9 gene to Xp11.2----p11.4.  相似文献   

2.
3.
ts A1S9 mutant cells, derived from wild type WT-4 mouse L-cells, are temperature-sensitive (ts) for DNA synthesis and cell division. We try to determine the cause of the arrest of DNA replication in ts A1S9 cells at the nonpermissive temperature by comparing the modifications induced by the shift of temperature on the activity and the synthesis of DNA polymerase-alpha and DNA primase as a function of time. Forty-seven hours after temperature upshift DNA polymerase-alpha activity of ts A1S9 cells was inhibited by 90% while primase activity was barely detectable. By contrast, the activities of both enzymes increased to a plateau level in WT-4 cultured at either temperature and in ts A1S9 cells grown at the low permissive temperature. Study of the synthesis of DNA polymerase-alpha primase and of the structure of the enzyme complex during cell cycle progression was approached by immunoprecipitation of [35S]-labelled cells, with a specific monoclonal antibody directed against DNA polymerase-alpha. We have found that, irrespective of temperature of cultivation of WT-4 or ts A1S9 cells, this antibody precipitated polypeptides of 220, 186, 150, 110, 68-70, 60, and 48 kDa from cell extracts. With ts A1S9 cells cultivated at 38.5 degrees C for 48 hr the polypeptides of 220 and 186 kDa, associated with alpha-polymerase activity, were considerably more abundant than in the control cells, with a concomitant decline in the polypeptides of 60 and 48 kDa, implicated in primase activity. Thus the inhibition of DNA polymerase-alpha cannot be due to a decreased synthesis of the 186 kDa subunit but to its temperature inactivation. Consistent with a recent asymmetric dimeric model where polymerase-alpha complex and polymerase delta complex synthesize co-ordinately at the replication fork lagging and leading DNA strands, the observed alterations of polymerase-alpha and primase content explain the inhibition of DNA synthesis and the cell cycle arrest of the ts A1S9 cells at the nonpermissive temperature.  相似文献   

4.
A cDNA for a new catalytic subunit (C gamma) of the cAMP-dependent protein kinase (PKA) was recently isolated from a human testis cDNA library. This subunit was shown to be expressed only in testis, and has so far not been demonstrated in other species. In the present study, we have determined the chromosomal localization of this gene employing a cDNA for C gamma as a probe. Southern blot analysis of genomic DNA from human x mouse somatic cell hybrids allowed us to assign this gene (PRKACG) to human chromosome 9. In situ hybridization to metaphase chromosomes confirmed the somatic cell hybrid data and regionally mapped the C gamma gene of PKA to human chromosome 9q13.  相似文献   

5.
A human genomic library was screened with a mixture of two cDNA probes, with one covering the 5' coding sequence and the other containing the 3'-end portion of human pregnancy-specific beta 1 glycoprotein (SP1). Seventeen clones were identified, all of which carried insert fragments capable of hybridizing with the cDNA probe. Insert size of these clones varied from 15.0 to 19.8 kb. Partial restriction maps were constructed, which demonstrated the presence of at least seven groups of unique SP1 genomic clones and suggested the possibility of multiple genes coding for SP1. The multigene nature of SP1 was confirmed by hybridization of the SP1 cDNA probe to multiple bands on Southern blots of human genomic DNA. Further analysis with chromosomal DNA dot blot demonstrated the presence of homologous sequences on the X chromosome and autosomal chromosome 6. Thus, human SP1 is apparently coded for by more than one gene residing on the X and 6 chromosomes.  相似文献   

6.
The human gene A1S9T, which complements the temperature-sensitive cell-cycle defect in the murine cell line tsA1S9 and which has previously been assigned to the X-chromosome short arm, is expressed from the inactive X chromosome in human/tsA1S9 somatic cell hybrids grown at the nonpermissive temperature. The Y chromosome cannot complement the defect; thus, unlike at least two other noninactivated X loci, A1S9T has no functional Y-linked homologue. As A1S9T is readily selectable in somatic cell hybrids with the tsA1S9 mouse line, this marker should be useful in isolating somatic cell hybrids containing inactive X chromosomes, or abnormal X's (active or inactive) retaining the short arm.  相似文献   

7.
The tsBN462 cell line, a temperature-sensitive (ts) mutant isolated from the hamster cell line, BHK21/13, cannot progress into S phase at 39.5 degrees C, following the release from isoleucine deprivation. The mutant cells were transfected with high molecular weight (HMW) DNA from human KB cells, and several human DNA bands were found to be conserved through three cycles of ts+ transformation. Conserved human DNA was isolated from the cosmid library of the secondary ts+ transformant (K-1-1), using 32P-labelled total human DNA as a probe. The isolated human DNA covers about 70 kb of human DNA flanked with hamster DNA, and originates from the human X chromosome. The middle part (56 kb) of the isolated human DNA was conserved through the primary, secondary and tertiary ts+ transformation, without gross rearrangement.  相似文献   

8.
Summary Glucosamine-6-sulphatase (G6S), a lysosomal enzyme found in all cells, is involved in the catabolism of heparin, heparan sulphate, and keratan sulphate. Deficiency of G6S results in the accumulation of undegraded substrate and the lysosomal storage disorder mucopolysaccharidosis type IIID (Sanfilippo D syndrome). Regional mapping by in situ hybridization of a 3H-labelled human G6S cDNA probe to human metaphase chromosomes indicated that the G6S gene is localized to chromosome 12 at q14. The localization of the G6S gene to chromosome 12 was confirmed using the G6S cDNA clone in Southern blot hybridization analysis of DNA from human x mouse hybrid cell lines.  相似文献   

9.
The mechanism of induction of DNA synthesis in quiescent rat 3Y1 cells by the adenovirus E1A gene was investigated using the 3Y1 derivative cell lines g12-21, gn12RB1, and gn12RB2. The g12-21 cells express the E1A 12S cDNA and the latter two cells express both the E1A 12S cDNA and the human retinoblastoma susceptibility (Rb) gene at different levels in response to dexamethasone (dex). The cDNA sequences of E1A-inducible cell cycle-dependent genes, clone 3 and clone 16, were isolated by differential screening of a cDNA library constructed from dex-treated g12-21 cells. The quiescent 3Y1 cells induced c-fos and c-myc expression within 2 h after serum stimulation and expressed clone 16 and clone 3 transiently at around 8 h before the onset of DNA synthesis (10 h). In contrast, the quiescent g12-21 cells treated with dex expressed a high level of E1A at 6 to 8 h after treatment and expressed clone 16 and clone 3 at around 8 h without stimulation of c-fos and c-myc expression, suggesting that E1A bypasses the cell cycle early in G1. The half-maximal rate of DNA synthesis was reached in a much shorter time in dex-treated g12-21 cells (12 h) than in serum-treated 3Y1 cells (18 h), suggesting that E1A also bypasses the cell cycle at the G1/S boundary. The gn12RB1 and gn12RB2 cells were unable to induce DNA synthesis in response to dex presumably due to lower levels of E1A expression, although gn12RB2 but not gn12RB1 cells could express clone 16 and clone 3. These results suggest that the level of E1A required for bypass at the G1/S boundary is higher than that required early in G1.  相似文献   

10.
The involvement of altered protein metabolism in the expression of the temperature-sensitive (ts) pleiotropic phenotype of ts A1S9 cells was investigated. Cells are ts in growth and DNA replication. They undergo decondensation of their heterochromatin, interruptions of chromatin synthesis, and changes in cell size and morphology at the non-permissive temperature (npt) of 38.5 degrees C. Whereas the rates of incorporation of 3H-leucine, 35S-methionine, and 3H-fucose into proteins were unaffected at 38.5 degrees C, net protein accumulation was greatly reduced. This imbalance resulted from a rapid increase in the rate of protein degradation at the npt. Enhancement of protein degradation was detected within 2-4 hours after temperature upshift and constitutes the earliest metabolic alteration thus far observed during expression of the temperature-sensitive phenotype. The average half-life of proteins performed in ts A1S9 cells at 34 degrees C was decreased four-fold at the npt, and all major cytoplasmic proteins were affected equally. Enhanced protein degradation at the npt was shown to be sensitive to cycloheximide, ammonia, chloroquine, and vinblastine at concentrations that did not affect the basal protein degradation of normally cycling cells. Increased protein degradation at 38.5 degrees C did not involve an equivalent increase in total cellular protease activity. The data obtained are compatible with a model that suggests that temperature inactivation of the ts A1S9 gene product results in activation of a lysosome-mediated mechanism for the rapid degradation of cytoplasmic proteins.  相似文献   

11.
We have isolated a cDNA encoding the human interferon-inducible gene 6-26, by screening a cDNA library with an oligodeoxynucleotide probe. Its sequence was found to be identical to that of the human thymosin-beta 4 cDNA, which encodes a protein present in most cell types, but whose function is not clear at present. By hybridization of the thymosin-beta 4/6-26 cDNA to the DNA of a panel of human-rodent somatic cell hybrids, we found that at least seven genes homologous to this cDNA are present in the human genome. We localized these genes, some of which might be pseudogenes, to seven distinct chromosomes, namely, chromosomes 1, 2, 4, 9, 11, 20, and X.  相似文献   

12.
Thyroxine-binding globulin (TBG) is the major thyroid-hormone transport protein in the plasma of most vertebrate species. A recombinant phage (lambda cTBG8) containing a cDNA insert of human TBG recently has been described. With the cDNA insert from lambda cTBG8 used as a radiolabeled probe, DNA from a series of somatic-cell hybrids containing deletions of the X chromosome was analyzed by means of blot hybridization. The results indicated that the TBG gene is located in the midportion of the long arm of the X chromosome between bands Xq11 and Xq23. The gene then was mapped to band region Xq21-22 by means of in situ hybridization to metaphase chromosomes. Sequences on the X chromosome that are homologous to the cDNA probe are contained within a single EcoRI restriction fragment of 12.5 kb in human DNA. On the basis of the intensity of the hybridization signal on Southern blots, it was determined that the human TBG cDNA probe used in the present study shares significant homology with hamster and mouse sequences. A single EcoRI restriction fragment was recognized in both hamster (8.0-kb) and mouse (5.1-kb) DNA.  相似文献   

13.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

14.
The tsBN462 cell line, a temperature-sensitive (ts) mutant isolated from the hamster cell line, BHK21/13 has a ts defect in G1 progression and belongs to the same complementation group as the ts13 cell line. We cloned human cDNA which can complement both tsBN462 and ts13 mutations, from the cDNA library of the secondary ts+ transformant (K-1-1) of tsBN462 cells using, as a probe, the isolated human X chromosomal genomic DNA. The cloned DNA is 5.3 kb long and has an open reading frame of 4662 bp, encoding a protein of 178,768 daltons. The putative protein is hydrophilic with a tandem repeat of 120 amino acids in the C-terminal region. An amino acid sequence (PPKKKRRV), similar to the consensus sequence for the nuclear translocation signal, is located immediately before the tandem repeat of amino acids.  相似文献   

15.
J Inazawa  R Fukunaga  Y Seto  H Nakagawa  S Misawa  T Abe  S Nagata 《Genomics》1991,10(4):1075-1078
The gene for the granulocyte colony-stimulating factor (G-CSF) receptor (CSF3R) was localized on the p35-p34.3 region of human chromosome 1 by in situ hybridization using human G-CSF receptor cDNA as the probe. Polymerase chain reaction using oligonucleotides specific for the human CSF3R produced a specifically amplified DNA fragment with DNA from mouse A9 cells that contained human chromosome 1 but not other human chromosomes. Localization of the CSF3R on chromosome 1 was further confirmed by the spot-blot hybridization of sorted human chromosomes.  相似文献   

16.
17.
The chromosomal location of the gene for the alpha polypeptide of the pyruvate dehydrogenase (alpha E1), a major component of the pyruvate dehydrogenase complex, was determined by using a cloned cDNA for alpha E1. This 1-kb cDNA was isolated from a human liver lambda gt11 expression library with specific antibodies and included the coding (from amino acid 144 to the carboxy terminus) and the 3' untranslated regions. Southern blot analysis of the DNA from a panel of rodent-human hybrid cells showed that the absence or the presence of the major EcoRI fragment that hybridized with this cDNA probe was concordant with the presence of the Xq24-p22 region of the human X chromosome. The result of in situ hybridization with human metaphase chromosomes further mapped the alpha E1 gene to the Xp arm.  相似文献   

18.
A 1.8-kb cDNA encoding portion of a novel collagenous chain was isolated from a human rhabdomyosarcoma cell line by cross-hybridization using a chicken type V collagen probe. Sequence analysis suggests that this chain belongs to the recently discovered group of collagens, termed the FACIT class of macromolecules. This cDNA was used to locate the corresponding gene (D6S228E) to chromosome 6, notably at position 6q12-q14. Interestingly, within this region of human chromosome 6 residues the alpha 1 (IX) collagen gene (COL9A1), a member of the FACIT group.  相似文献   

19.
The gene for the granulocyte colony-stimulating factor (G-CSF) receptor (CSF3R) was localized on the p35–p34.3 region of human chromosome 1 by in situ hybridization using human G-CSF receptor cDNA as the probe. Polymerase chain reaction using oligonucleotides specific for the human CSF3R produced a specifically amplified DNA fragment with DNA from mouse A9 cells that contained human chromosome 1 but not other human chromosomes. Localization of the CSF3R on chromosome 1 was further confirmed by the spot-blot hybridization of sorted human chromosomes.  相似文献   

20.
Type XIII collagen is a recently described collagen that resembles in structure the short-chain collagens of types IX, X, and XII. Unlike any other collagen, the type XIII is found in several different forms generated through alternative splicing. A 2.0-kb genomic fragment from the human alpha 1 (XIII) collagen gene was isolated and shown by DNA sequencing to contain exon 12 as counted from the 3' end. This fragment was used as a probe to localize the gene. The gene (COL13A1) was assigned to chromosome 10 by hybridization of the probe to DNA isolated from a panel of human-mouse somatic cell hybrids containing different human chromosomes. Furthermore, the gene was mapped to the q22 region by in situ hybridization to metaphase chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号