首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

2.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

3.
Calsequestrin is a Ca2+-binding protein located intraluminally in the junctional sarcoplasmic reticulum (SR) of striated muscle. In this study, Ca2+ binding to cardiac calsequestrin was assessed directly by equilibrium dialysis and correlated with effects on protein conformation and calsequestrin's ability to interact with other SR proteins. Cardiac calsequestrin bound 800-900 nmol of Ca2+/mg of protein (35-40 mol of Ca2+/mol of calsequestrin). Associated with Ca2+ binding to cardiac calsequestrin was a loss in protein hydrophobicity, as revealed with use of absorbance difference spectroscopy, fluorescence emission spectroscopy, and photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125]iodophenyl)diazirine. Ca2+ binding to cardiac calsequestrin also caused a large change in its hydrodynamic character, almost doubling the sedimentation coefficient. We observed that cardiac calsequestrin was very resistant to several proteases after binding Ca2+, consistent with a global effect of Ca2+ on protein conformation. Moreover, Ca2+ binding to cardiac calsequestrin completely prevented its interaction with several calsequestrin-binding proteins, which we identified in cardiac junctional SR vesicles for the first time. The principal calsequestrin-binding protein identified in junctional SR vesicles exhibited an apparent Mr of 26,000 in sodium dodecyl sulfate-polyacrylamide gels. This 26-kDa calsequestrin-binding protein was greatly reduced in free SR vesicles and absent from sarcolemmal vesicles and was different from phospholamban, an SR regulatory protein exhibiting a similar molecular weight. Our results suggest that the specific interaction of calsequestrin with this 26-kDa protein may be regulated by Ca2+ concentration in intact cardiac muscle, when the Ca2+ concentration inside the junctional SR falls to submillimolar levels during coupling of excitation to contraction.  相似文献   

4.
The fluorescent calcium indicator, calcein, has been used as a high-affinity indicator of Ca2+ in the aqueous phase at physiological pH in the study of high-affinity calcium binding to sarcoplasmic reticulum (SR). The binding constant of the indicator at physiological pH is 10(3)-10(4) M-1 and increases with increasing pH. The binding mechanism of the indicator with Ca2+ and Mg2+ is described. Application of calcein as an aqueous indicator of Ca2+ binding to the SR at room temperature has revealed two classes of binding sites: one with high capacity and low affinity (ca. 820 nmol/mg protein, Kd = 1.9 mM), and another with low capacity and higher affinity (ca. 35 nmol/mg protein, Kd = 17.5 micronM). The divalent cation specificity of the low-affinity site is low and Ca2+/Mg2+ specificity of the high-affinity site is high. Quantitative studies of the bindings indicate that the high-affinity site residues in the Ca2+ ATPase (carrier) protein and represents complexation in the active site of the carrier and that the low-affinity site residues in the nonspecific acidic binding proteins. The contribution of Donnan equilibrium effects to the measured binding is shown to be insignificant. Stopped flow kinetic studies of Ca2+ passive binding with calcein and arsenazo III dyes have demonstrated that the binding to high-affinity site is very fast and that the overall binding reaction with the low-affinity site is slow, with a time course of about 4 s. Our analysis has shown that at least part of the low-affinity acidic proteins are within the SR matrix and that Ca2+ can reach them only by transversing the membrane via the Ca2+ carrier (Ca2+ ATPase). A model of the SR is proposed that accounts for several functional properties of the organelle in terms of its known protein composition and topological organization.  相似文献   

5.
Rapid Ca2+ release from Ca2+ -loaded sarcoplasmic reticulum vesicles (SR) was previously shown to occur upon the addition of micromolar concentrations of heavy metals, and the extent of Ca2+ release was dependent on the binding affinity of the metal to sulfhydryl group(s) on an SR protein (Abramson, J.J., Weden, L., Trimm, J.L., and Salama, G. (1982) Biophys. J. 37, 134a; Abramson, J.J., Trimm, J.L., Weden, L., and Salama, G. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1526). The nature of this Ca2+ release site was examined further and found to be predominantly distributed in heavy SR (HSR) rather than light SR fractions. Ag+ -induced Ca2+ release from heavy SR was blocked by local anesthetics and ruthenium red which are known to inhibit Ca2+ release in skeletal fibers and in heavy SR, respectively. The rate of Ca2+ efflux from SR triggered by Ag+ was dependent on pH, Mg2+, and ionic strength of the medium. Efflux rates increased by a factor of 4 from pH 6.0 to 7.0 and then decreased in more alkaline reaction mixtures. Efflux rates from actively or passively loaded SR increased by a factor of 2.5 with increasing Mg2+ from 0 to 1 mM and then decreased in the range of 1 to 10 mM Mg2+. ATP-dependent Ca2+ uptake by SR was similar in 100 mM KCl and in 200 mM sucrose solutions, but the extent and rate of Ca2+ efflux induced by Ag+ were dramatically reduced with decreasing ionic strength of the medium. In solutions containing 5 mM Mg2+, the rate of Ca2+ efflux from heavy SR averaged over the first 1.5 s after the addition of Ag+ was 58 nmol of Ca2+/mg of SR/s, a value comparable to the fast initial rate of ATP-dependent Ca2+ uptake. The maximum initial rate of Ag+ -induced Ca2+ efflux from heavy SR in 1 mM Mg2+ may be comparable to the rate of Ca2+ release and tension development in muscle fibers. Our data indicate that Ag+ reacts with a protein or proteins in the SR, probably not the (Ca2+, Mg2+)-ATPase, to induce a rapid release of Ca2+, possibly from the physiological Ca2+ release site.  相似文献   

6.
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.  相似文献   

7.
Thapsigargin is found to be a potent inhibitor of the intracellular Ca2+ pump proteins from skeletal muscle sarcoplasmic reticulum (SR), cardiac SR, and brain microsomes. For skeletal muscle SR, the molar ratio of thapsigargin to Ca2+ pump protein for complete inhibition (MRc) of the Ca2+ loading rate, Ca(2+)-dependent ATPase activity, and formation of phosphorylated intermediate (EP) was approximately 1. When the Ca2+ pump protein of low affinity to Ca2+ (E2 state) was pretreated with thapsigargin, ATP and Ca2+ binding to the Ca2+ pump protein was completely inhibited. In the presence of Ca2+ (E1 state), Ca2+ pump protein was protected from inactivation by thapsigargin with respect to Ca2+ binding and EP formation. The MRc for brain microsomes, which mediate Ca2+ uptake into intracellular (inositol 1,4,5-trisphosphate-releasable) Ca2+ pools, is likewise stoichiometric. Approximately 30% of Ca2+ loading activity of brain microsomes was insensitive to thapsigargin, indicating the presence of other Ca2+ pumping system(s). The MRc for heart is 3.8, indicating that the Ca2+ pump of cardiac SR is less sensitive to thapsigargin. Phosphorylation of cardiac SR with protein kinase A increased the sensitivity to thapsigargin to MRc of 2.8. In summary, we find that: 1) thapsigargin is the most effective inhibitor of the Ca2+ pump protein of intracellular membranes (SR and endoplasmic reticulum); 2) its primary inhibitory action appears to inactivate the E2 form of the enzyme preferentially; 3) cardiac SR shows lesser sensitivity to thapsigargin than skeletal muscle SR and brain microsomes; protein kinase A treatment of cardiac SR enhances the sensitivity to the drug.  相似文献   

8.
Nd3+ binding to sarcoplasmic reticulum (SR) was detected by inhibition of ATPase activity and directly by a fluorimetric assay. Both methods indicated that Nd3+ inhibited the ATPase activity by binding in the high-affinity Ca2+ binding sites. The stoichiometry of binding was about 11 nmol of Nd3+ bound per mg of SR proteins at pNd = 6.5. At higher [Nd3+], substantial nonspecific binding occurred. The association constant for Nd3+ binding to the high-affinity Ca2+ binding sites was estimated to be near 2 X 10(9) M-1. When the CaATPase was inactivated with fluorescein isothiocyanate (FITC), 5.3 nmol were bound per mg of SR protein. This fluorescent probe is known to bind in the ATP binding site. The stoichiometry of Nd3+ binding to FITC-labeled CaATPase was the same, within experimental error, as to the unlabeled CaATPase. Fluorescence energy transfer between FITC in the ATP site and Nd3+ in the Ca2+ sites was found to be very small. This donor-acceptor pair has a critical distance of 0.93 nm and the distance between the ATP site and the closest Ca2+ was estimated to be greater than 2.1 nm. Parallel measurements with FITC-labeled SR and Co2+, an acceptor with a critical distance 1.2 nm, suggested the ATP and Ca2+ binding sites are greater than 2.6 nm apart.  相似文献   

9.
Chicken cerebellum microsomal fractions contain a protein tentatively identified as calsequestrin (CS) (Volpe et al., Neuron 5, 713-721, 1990). Here we report, for the first time, the purification of cerebellum CS from whole tissue homogenate by DEAE-Cellulose chromatography and Ca(2+)-dependent elution from phenyl-Sepharose. The purified cerebellum CS displays the shift and increase in intrinsic fluorescence characteristic of skeletal muscle CS, and is shown to be a high-capacity, low-affinity Ca2+ binding protein (Kd = 1 mM).  相似文献   

10.
In order to obtain a better understanding of the mechanism of the function of fragmented sarcoplasmic reticulum (FSR), we examined the binding of beta,gamma-methylene [3H]adenosine triphosphate (AMPOPCP), an unhydrolyzable ATP analogue, and 45Ca to FSR from bullfrog skeletal muscle. In medium containing 100 mM KCl and 20 mM Tris-maleate (pH 6.80) on ice, FSR has a single class of [3H]AMPOPCP-binding sites which amount to 4.4-8.6 nmol/mg protein (usually about 7 nmol/mg protein). The affinity was in the range of 6.2-12.3 X 10(3) M-1 in the absence of Ca2+. Ca2+ increased the affinity for AMPOPCP without changing the total number of binding sites, whereas Mg2+ decreased it. The change of the affinity is due to the direct effect of Ca2+ and Mg2+ on FSR. The possibility that Mg-AMPOPCP, Ca-AMPOPCP, and free AMPOPCP might have different affinities to FSR is excluded. The extent of Ca2+-induced enhancement in AMPOPCP binding is dependent not only on Ca2+ concentration but also on the concentration of AMPOPCP. The binding sites for AMPOPCP are likely to be the ATP-binding sites on Ca2+-ATPase protein on the basis of several lines of evidence, including competition between ATP, ADP, or AMP. FSR also binds 7-13 nmol Ca/mg protein (usually about 8 nmol/mg protein) with the affinity of 4-14 X 10(4) M-1 in the absence of the nucleotide in a similar medium containing 4 mM MgCl2. The ratio of Ca-binding sites to AMPOPCP-binding sites is mostly 1, but occasionally 2, corresponding to the ratio of Ca accumulated to ATP hydrolyzed by frog FSR. In the presence of a sufficient amount of the nucleotide, the affinity for Ca2+ was also increased. These findings are well explained by the random sequence binding model of Ca2+ and AMPOPCP, which bind to FSR with positive cooperative interaction between them. However, high concentrations of the nucleotide result in a negative cooperative interaction in the nucleotide binding in the presence of Ca2+, whereas no cooperativity is observed in the absence of Ca2+. Stimulation of Ca binding by AMPOPCP is also correspondingly affected. Comparative studies show that rabbit skeletal muscle FSR, in contrast to the frog one, shows negative cooperativity in its interactions with Ca2+ and AMPOPCP under some conditions and that the ratio of Ca-binding sites to AMPOPCP-binding sites is 2, corresponding to the well-known stoichiometry with ATP.  相似文献   

11.
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin.  相似文献   

12.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

13.
To understand the nature of the transmission process of excitation- contraction (EC) coupling, the effects of the anion perchlorate were investigated on the voltage sensor (dihydropyridine receptor, DHPR) and the Ca release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum (SR). The molecules, from rabbit skeletal muscle, were either separated in membrane vesicular fractions or biochemically purified so that the normal EC coupling interaction was prevented. Additionally, the effect of ClO4- was investigated on L-type Ca2+ channel gating currents of guinea pig ventricular myocytes, as a native DHPR not in the physiological interaction of skeletal muscle. At 20 mM, ClO4- had minor effects on the activation of ionic currents through Ca channels from skeletal muscle transverse tubular (T) membranes fused with planar bilayers: a +7-mV shift in the midpoint voltage, V, with no change in kinetics of activation or deactivation. This is in contrast with the larger, negative shift that ClO4- causes on the distribution of intramembrane charge movement of skeletal muscle. At up to 100 mM it did not affect the binding of the DHP [3H]PN200-110 to triad-enriched membrane fractions (TR). At 8 mM it did not affect the kinetics or the voltage distribution of gating currents of Ca channels in heart myocytes. These negative results were in contrast to the effects of ClO4- on the release channel. At 20 mM it increased several-fold the open probability of channels from purified RyR incorporated in planar bilayers and conducting Ba2+, an effect seen on channels first closed by chelation of Ca2+ or by the presence of Mg2+. It significantly increased the initial rate of efflux of 45Ca2+ from TR vesicles (by a factor of 1.75 at 20 mM and 4.5 at 100 mM). ClO4- also increased the binding of [3H]ryanodine to TR fractions. The relative increase in binding was 50-fold at the lowest [Ca2+] used (1 microM) and then decayed to much lower values as [Ca2+] was increased. The increase was due entirely to an increase in the association rate constant of ryanodine binding. The chaotropic ions SCN- and I- increased the association rate constant to a similar extent. The binding of ryanodine to purified RyR protein reconstituted into liposomes had a greater affinity than to TR fractions but was similarly enhanced by ClO4-. The reducing agent dithiothreitol (5 mM) did not reduce the effect of ClO4- , and 5% polyethylene glycol, with an osmolarity equivalent to 20 mM ClO4-, did not change ryanodine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

15.
It was investigated whether mitochondria play a significant role in the physiological regulation of the contractile process by Ca2+ in cardiac muscle in comparison with the sarcoplasmic reticulum (SR). Ca uptake activities of chicken cardiac SR and rabbit cardiac mitochondria were measured by means of centrifugation, dual-wave-length spectrophotometric and Millipore filtration methods. The maximum Ca uptake capacity of cardiac SR was usually 50-60 nmoles/mg protein and the apparent binding constant was 2.0 X 10(6) M-1. The apparent Ca-binding constant of cardiac mitochondria under limited loading conditions was 2.4 X 10(5) M-1 at pH 7.4 and 5.9 X 10(4) M-1 at pH 6.8. In the presence of 100 muM Ca2+ at 28-29 degrees, the estimated initial rate of Ca uptake of cardiac SR ranged from 20 to 30 nmoles Ca/mg-sec, while that of mitochondria was 4.6 nmoles Ca/mg-sec under limited loading conditions at pH 7.4 and 0.64 nmoles Ca/mg-sec under massive loading conditions at pH 6.8, which was much closer to physiological conditions. In the presence of low Ca2+ concentrations, the initial rate of Ca uptake of cardiac SR was 0.5 nmoles Ca/mg-sec at 3.5 X 10(-7) M Ca2+ and that of mitochondria under massive loading conditions at 1 X 10(-6) M Ca2+ was 0.02 nmoles Ca/mg-sec at pH 7.4 and 0.004 nmoles Ca/mg-sec at pH 6.8. The Ca uptake activities were also examined using glycerol-extracted cardiac muscle fibers. Cardiac SR, 1.7 mg/ml, reduced the tension of maximally contracted cardiac muscle fibers to a level corresponding to about 30% of maximum tension, but in the presence of 14.3 mg/ml of mitochondria the maximum tensions of both skeletal muscle and cardiac muscle fibers were maintained for at least 3 min. From these results the time course of relaxation of cardiac muscle induced by cardiac SR or mitochondria was calculated. It was concluded that, in the physiological contraction of cardiac muscle, the SR plays a major role in controlling intracellular Ca2+ movement; the Ca uptake of mitochondria is relatively insignificant. When the cardiac muscle contracts maximally, SR alone cannot relax the cardiac muscle without the aid of other Ca removing system.  相似文献   

16.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

17.
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.  相似文献   

18.
Bovine adrenocortical microsomes were prepared and partially purified by discontinuous sucrose density gradient. Light fractions of the microsomes at the interface between 15 and 30% sucrose solution, exhibited ATP dependent Ca2+ uptake. The Ca2+ uptake was dependent on temperature and stimulated by free Ca2+ (the concentration for half maximal activation = 1.0 microM) and Mg2+. The Ca2+ uptake was inhibited by ADP but not affected by 10 mM NaN3 or 0.5 mM ouabain. Calcium release from the microsomes was accelerated by a Ca2+ ionophore, A23187, but not by a Ca2+ antagonist, diltiazem. A microsomal protein with a molecular weight of 100-110 kDa was phosphorylated by [gamma-32P]ATP in the presence of Ca2+, and the Ca2+ dependency was over the same range as the Ca2+ uptake (the concentration for half maximal activation = 3.0 microM). The phosphorylated protein (EP) was stable at acidic pH but labile at alkaline pH and sensitive to hydroxylamine. The rate of EP formation at 0 degrees C in the presence of 1 microM ATP and 10 microM Ca2+ (half time = 0.2 s) was less than that in the sarcoplasmic reticulum (SR) of rabbit skeletal muscle (half time = 0.1 s). The rate of EP decomposition at 0 degrees C after adding EGTA was about 6.7 times slower (rate constant: kd = 4.3 X 10(-3) s-1) than that of SR. It was suggested that adrenocortical microsomes contain a Ca2+ dependent ATPase which function as a Ca2+ pump with similar properties to that of SR.  相似文献   

19.
In skeletal muscle, the junctional sarcoplasmic reticulum (JFM) plays a crucial role in excitation-contraction coupling and Ca2+ release. In the present report, the sarcoplasmic reticulum (SR) was fractionated into longitudinal SR (LSR), terminal cisternae (TC), and JFM. Each fraction had a unique protein profile as detected by SDS-polyacrylamide gel electrophoresis as well as specific Ca2+ binding proteins as judged by 45Ca ligand overlay of nitrocellulose blots. Ca2+ binding proteins of LSR were the Ca2+ ATPase (Mr of 115K), an 80K polypeptide, and the intrinsic glycoprotein (Mr of 160K); Ca2+ binding proteins of JFM were polypeptides with the following Mr values: 350K and 325K (feet components), 200K, 170K, a doublet of 140K, 118K, 65K (calsequestrin), and 52K. Measurements of Ca2+ binding to SR fractions by equilibrium dialysis indicated that 8-17 nmol Ca2+/mg of protein was specifically bound. After EDTA extraction of calsequestrin, JFM still bound Ca2+ (5-6 nmol/mg of protein), suggesting the existence of specific Ca2+ binding sites. The Ca2+ binding sites of Ca2+-gated Ca2+ release channels might be on two JFM polypeptides (Mr's of 350K and 170K) which are putative channel constituents (F. Zorzato, A. Margreth, and P. Volpe (1986) J. Biol. Chem. 261, 13252-13257).  相似文献   

20.
Junctional sarcoplasmic reticulum (SR) vesicles isolated from back muscles of normal and malignant hyperthermia susceptible (MHS) pigs were phosphorylated by addition of MgATP in the presence of 5 mM Ca2+ and 1 microM calmodulin (CaM). The major site of phosphorylation was a 60 kDa protein both in normal and MHS SR. The maximal amount of phosphorylation in MHS SR (5 pmol P/mg SR) was significantly lower than that in the normal SR (12 pmol P/mg SR). The phosphorylated 60 kDa protein was spontaneously dephosphorylated both in normal and MHS SR. Ca2+ release from the passively loaded SR was induced by a Ca2+-jump, and monitored by stopped-flow fluorometry using chlorotetracycline. In the absence of preincubation with MgATP, no significant difference was found in any of the kinetic parameters of Ca2+ release between normal and MHS SR. Upon addition of 20 microM MgATP to the passively loaded SR to phosphorylate the 60 kDa protein, the initial rate of Ca2+ release in normal SR significantly decreased from 659 +/- 102 to 361 +/- 105 nmol Ca2+/mg SR per s, whereas in MHS SR the rate decreased from 749 +/- 124 to 652 +/- 179 nmol Ca2+/mg SR per s. Addition of 20 microM adenosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppA) did not significantly alter the initial rate of Ca2+ release both in normal and MHS SR. These results suggest that the previously reported higher Ca2+ release rate in MHS SR (Kim et al. (1984) Biochim. Biophys. Acta 775, 320-327) is at least partly due to the reduced extent of the Ca2+/CaM-dependent phosphorylation of the 60 kDa protein. Two-dimensional gel electrophoresis study showed that amount of a protein with Mr = 55,000 was significantly lower in MHS SR than in normal SR suggesting that the abnormally lower amount of 55 kDa protein would cause the lower amount of phosphorylation of the 60 kDa protein in MHS SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号