首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
J Dewdney  T R Conley  M C Shih    H M Goodman 《Plant physiology》1993,103(4):1115-1121
We have characterized the effects of different light spectra on expression of the nuclear genes (GapA and GapB) encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis thaliana. Steady-state mRNA levels for both genes in etiolated seedlings increased after a short exposure to red or blue light. However, these increases could not be reversed by immediate far-red light following the initial light treatment. In mature plants, a short light pulse, regardless of its spectrum, had no apparent effect on GapA or GapB mRNA levels in dark-adapted plants. In contrast, continuous exposure to red, blue, or white light resulted in increases of GapA and GapB mRNA levels, with blue and white light being far more efficient than red light. Similarly, continuous exposure of etiolated seedlings to red, blue, or white light also resulted in increased GapA and GapB mRNA levels. In addition, we show that illumination of red light-saturated Arabidopsis plants with continuous blue light results in further increases of GapA and GapB mRNA levels. Based on these results, we conclude that both blue light photoreceptor- and phytochrome-mediated pathways are involved in light regulation of GapA and GapB genes in Arabidopsis, with blue light acting as the dominant regulator.  相似文献   

4.
Utilizing yeast strains containing insertion mutations in each of the three glyceraldehyde-3-phosphate dehydrogenase structural genes, the level of expression of each gene was determined in logarithmically growing cells. The contribution of the TDH1, TDH2, and TDH3 gene products to the total glyceraldehyde-3-phosphate dehydrogenase activity in wild type cells is 10-15, 25-30, and 50-60%, respectively. The relative proportions of expression of each gene is the same in cells grown in the presence of glucose or ethanol as carbon source although the total glyceraldehyde-3-phosphate dehydrogenase activity in cells grown in the presence of glucose is 2-fold higher than in cells grown on ethanol. The polypeptides encoded by each of the structural genes were identified by two-dimensional polyacrylamide gel electrophoresis. The TDH3 structural gene encodes two resolvable forms of glyceraldehyde-3-phosphate dehydrogenase which differ by their net charge. The apparent specific activity of glyceraldehyde-3-phosphate dehydrogenase encoded by the TDH3 structural gene is severalfold lower than the enzymes encoded by TDH1 or TDH2. The polypeptides encoded by the TDH2 or TDH3 structural genes form catalytically active homotetramers. The apparent Vmax for the homotetramer encoded by TDH3 is 2-3-fold lower than the homotetramer encoded by TDH2. Evidence is presented that isozymes of glyceraldehyde-3-phosphate dehydrogenase exist in yeast cells, however, the number of different isozymes formed was not established. These data confirm that the three yeast glyceraldehyde-3-phosphate dehydrogenase genes encode catalytically active enzyme and that the genes are expressed at different levels during logarithmic cell growth.  相似文献   

5.
6.
T R Conley  M C Shih 《Plant physiology》1995,108(3):1013-1022
In a previous study of Arabidopsis thaliana (J. Dewdney, T.R. Conley, M.-C. Shih, H.M. Goodman [1993] Plant Physiol 103: 1115-1121), it was postulated that both blue light receptor- and phytochrome-mediated pathways contribute to regulation of the nuclear genes encoding A and B subunits of glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB). Here were report on the involvement of a nuclear gene encoding a putative blue-light receptor (HY4) and of a nuclear gene encoding phytochrome A apoprotein (PHYA) in regulation of the GAPA and GAPB genes in response to blue and far-red light. Continuous light irradiation experiments with the hy4 mutant demonstrate that the HY4 gene product is required for full expression of GAPA, GAPB, and one or more of the nuclear genes encoding small subunits of of ribulose-1,5-bisphosphate carboxylase/oxygenase. Continuous light irradiation and fluence-response studies with the phyA-101 mutant show that phytochrome A functions in far-red light regulation of GAPA, GAPB, nuclear genes encoding small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, and CAB genes. Phytochromes A and B alone either do not participate in red light-mediated gene regulation or have redundant functions, as shown by analysis of phyA-101 and phyB-1 single mutants. In addition, the hypothesis that chloroplast-nucleus interactions affect GAPA and GAPB gene regulation was tested. Herbicide-mediated photooxidative damage to chloroplasts in A thaliana seedlings strongly decreased the maximum amount of GAPA and GAPB steady-state mRNA detected in continuous-light irradiation experiments. Full expression of the GAPB genes is dependent on the presence of functional chloroplasts.  相似文献   

7.
M C Shih  P Heinrich  H M Goodman 《Gene》1991,104(2):133-138
Both cDNA and genomic clones for the nuclear genes encoding chloroplast (cp) (gapA and gapB) and cytosolic (gapC) glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Arabidopsis thaliana have been isolated and characterized. Genomic Southern-blot analyses indicate that there is only one copy of each gapA, gapB and gapC gene in A. thaliana. Comparison of the deduced amino acid (aa) sequences shows that the A and B subunits are highly similar (80% positional aa identity), while there is less similarity between the cp and cytosolic subunits (45% aa identity). These relationships are consistent with the idea that the cp and cytosolic GAPDHs evolved from different lineages, as suggested in our previous study of tobacco GAPDHs [Shih et al., Cell 47 (1986) 73-80]. In addition, the chromosomal locations for the three gap genes were determined by restriction fragment length polymorphism mapping; the three gap genes are not closely linked, gapA (55.8 cM) and gapC (0.0 cM) are on chromosome 3, and gapB (51.3 cM) is on chromosome 1.  相似文献   

8.
Algae are a heterogeneous group of photosynthetic eukaryotes traditionally separated into three major subdivisions: rhodophytes, chlorophytes, and chromophytes. The evolutionary origin of rhodophytes or red algae and their links to other photosynthetic and nonphotosynthetic eukaryotes have been a matter of much controversy and speculation. Here we present the first cDNAs of nuclear protein genes from red algae: Those encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from Chondrus crispus. A phylogenetic analysis including GAPDH gene sequences from a number of eukaryotic taxa, cyanobacteria, and purple bacteria suggests that chloroplasts and rhodoplasts together form a monophyletic group of cyanobacterial descent and that rhodophytes separated from chlorophytes at about the same time as animals and fungi. The composite GAPDH tree further demonstrates that chloroplast and cytosolic GAPDH genes are closely related to their homologs in cyanobacteria and purple bacteria, respectively, the presumptive ancestors of chloroplasts and mitochondria, thereby firmly establishing the endosymbiotic origin of these nuclear genes and their fixation in eukaryotic cells before the rhodophyte/chlorophyte separation. The present data are in conflict with phylogenetic inferences based on plastid-encoded rbcL sequences supporting a polyphyletic origin of rhodoplasts and chloroplasts. Comparison of rbcL to GAPDH phylogenies suggests that rbcL trees may be misleading because they are composed of branches representing ancient duplicated (paralogous) genes. Correspondence to: R. Cerff  相似文献   

9.
10.
11.
12.
13.
14.
Summary The distribution of the cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family (Gpc) in the maize genome was investigated; a genetic variant of glyceraldehyde-3-phosphate dehydrogenase activity is also described. Restriction fragment length polymorphism analysis of an F2 population shows that the variant is not linked to the three known Gpc genes. However, this trait is linked to one of two genomic DNA fragments that hybridize to a fragment of the Gpc3 coding region, implying the existence of a fourth Gpc gene. Antibodies and cDNA clones were used to investigate the organ-specific expression of the Gpc genes. Results were compared with the expression of the alcohol dehydrogenase 1 (Adh1) gene. RNA and protein levels were examined in seedling roots and shoots, as well as the leaves, developing endosperm and embryo, and the aleurone. In general, it was found that Gpc3 expression behaves in parallel with Adh1 in these organs, and protein levels closely parallel that of RNA for each gene examined. Both Gpc3 and Adh1 show a marked increase in expression during endosperm development, reaching a maximum 15 days after pollination, but no expression is detected in the leaf. Gpc1 expression is similar to that of Gpc2, with an overall decrease in the level of RNA during endosperm development. This expression is discussed in terms of the common sequences found upstream of genes expressed in the developing maize seed.  相似文献   

15.
We have characterized cis-acting elements involved in light regulation of the nuclear gene (GapA) encoding the A subunit of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in Arabidopsis thaliana. Our results show that a 1.1-kb promoter fragment of the GapA gene is sufficient to confer light inducibility and organ specificity in transgenic Nicotiana tabacum (tobacco) plants, using the beta-glucuronidase gene of Escherichia coli as the reporter gene. Deletion analysis indicates that the -359 to -110 bp region of the GapA gene is necessary for light responsiveness. Within this region there are three copies of a decamer repeat (termed the Gap box) having the consensus sequence 5'-CAAATGAA(A/G)A-3', which has not been characterized in the promoter regions of other light-regulated genes. A deletion (to -247) producing loss of one copy of these elements from the GapA promoter reduces light induction by two- to threefold compared with a promoter deletion (to -359) with all three Gap boxes present, while deletion of all three Gap boxes (to -110) abolishes light induction completely. Gel mobility shift experiments using tobacco nuclei as the source of nuclear proteins show that GapA promoter fragments that contain these repeats bind strongly to a factor in the nuclear extract and that binding can be abolished by synthetic competitors consisting only of a monomer or dimer of the Gap box. Furthermore, a trimer, dimer, and monomer of the Gap box show binding activity and, like the authentic GapA promoter-derived probes, show binding activities that are correlated with Gap box copy number. These results strongly suggest that these repeats play important roles in light regulation of the GapA gene of A. thaliana.  相似文献   

16.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.  相似文献   

17.
18.
Pea (Pisum sativum) chloroplastic glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) was tested for uracil DNA glycosylase activity. It was found that both the chloroplast and the recombinant subunit B dehydrogenases remove uracil from poly(dA[3H]dU). The glycosylase activity of the recombinant subunit B enzyme and that of a truncated form corresponding in length to subunit A were associated with the dehydrogenase activity in gel-filtration experiments. Both activities of the chloroplast enzyme were inhibited by antisera raised against recombinant subunit B, and both activities of the recombinant subunit B enzyme were inhibited by antisera raised against pea chloroplast glyceraldehyde-3-P dehydrogenase. Antisera raised against Escherichia coli uracil glycosylase did not affect the glycosylase activity of the recombinant subunit B enzyme. The glycosylase pH activity profile of the chloroplast dehydrogenase was unique. It is distinct from the dehydrogenase pH activity profile and from the pH activity profiles of other plant glycosylases. The glycosylase activity, but not the dehydrogenase activity, of the recombinant subunit B enzyme was inhibited by uracil. Pyridine nucleotides stimulated the glycosylase activity. To our knowledge this is the first example of a nonhuman glyceraldehyde-3-P dehydrogenase, and of an NADP-dependent glyceraldehyde-3-P dehydrogenase, that exhibits uracil glycosylase activity.  相似文献   

19.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase are enzymes essential for glycolysis and gluconeogenesis. Dinoflagellates possess several types of both GAPDH and enolase genes. Here, we identify a novel cytosolic GAPDH-enolase fusion protein in several dinoflagellate species. Phylogenetic analyses revealed that the GAPDH moiety of this fusion is weakly related to a cytosolic GAPDH previously reported in dinoflagellates, ciliates, and an apicomplexan. The enolase moiety has phylogenetic affinity with sequences from ciliates and apicomplexans, as expected for dinoflagellate genes. Furthermore, the enolase moiety has two insertions in a highly conserved region of the gene that are shared with ciliate and apicomplexan homologues, as well as with land plants, stramenopiles, haptophytes, and a chlorarachniophyte. Another glycolytic gene fusion in eukaryotes is the mitochondrion-targeted triose-phosphate isomerase (TPI) and GAPDH fusion in stramenopiles (i.e. diatoms and oomycetes). However, unlike the mitochondrial TPI-GAPDH fusion, the GAPDH-enolase fusion protein appears to exist in the same compartment as stand-alone homologues of each protein, and the metabolic reactions they catalyze in glycolysis and gluconeogenesis are not directly sequential. It is possible that the fusion is post-translationally processed to give separate GAPDH and enolase products, or that the fusion protein may function as a single bifunctional polypeptide in glycolysis, gluconeogenesis, or perhaps more likely in some previously unrecognized metabolic capacity.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH–Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号