首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficient production of recombinant proteins in Escherichia coli requires a proper termination of translation to ensure the synthesis of only the desired product. During the recombinant production of Bacillus subtilis flgM in E. coli, we detected an additional polypeptide of molecular mass higher than the expected, corresponding to a product of a translational readthrough of the UGA stop codon. In this paper we show that the readthrough was abolished when the synthesis of the recombinant protein was carried out at 25 degrees C. The possible causes that contribute to reduce the proportion of readthrough protein species against the correct terminated product are discussed.  相似文献   

2.
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.  相似文献   

3.
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cases. Here, we report that in human cells programmed stop codon readthrough is used to generate peroxisomal isoforms of cytosolic enzymes. We could show for NAD-dependent lactate dehydrogenase B (LDHB) and NAD-dependent malate dehydrogenase 1 (MDH1) that translational readthrough results in C-terminally extended protein variants containing a peroxisomal targeting signal 1 (PTS1). Efficient readthrough occurs at a short sequence motif consisting of a UGA termination codon followed by the dinucleotide CU. Leaky termination at this stop codon context was observed in fungi and mammals. Comparative genome analysis allowed us to identify further readthrough-derived peroxisomal isoforms of metabolic enzymes in diverse model organisms. Overall, our study highlights that a defined stop codon context can trigger efficient ribosomal readthrough to generate dually targeted protein isoforms. We speculate that beyond peroxisomal targeting stop codon readthrough may have also other important biological functions, which remain to be elucidated.  相似文献   

4.
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a “phenotypic mirror” of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.  相似文献   

5.
Floquet C  Rousset JP  Bidou L 《PloS one》2011,6(8):e24125
The APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC) readthrough (aminoglycosides, negamycin), as a means of reactivating endogenous APC. By quantifying the readthrough of 11 nonsense mutations in APC, we were able to identify those giving the highest levels of readthrough after treatment. For these mutations, we demonstrated that aminoglycoside or negamycin treatment led to a recovery of the biological activity of APC in cancer cell lines, and showed that the level of APC activity was proportional to the level of induced readthrough. These findings show that treatment with readthrough inducers should be considered as a potential strategy for treating cancers caused by nonsense mutations APC gene. They also provide a rational basis for identifying mutations responsive to readthrough inducers.  相似文献   

6.
Mutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein. In this study, we explored the possibility of using aminoglycoside antibiotics to induce the production of a full-length functional p53 protein from a gene carrying a PTC. We identified a human cancer cell line containing a PTC, for which high levels of readthrough were obtained in the presence of aminoglycosides. Using these cells, we demonstrated that aminoglycoside treatment stabilized the mutant mRNA, which would otherwise have been degraded by non-sense-mediated decay, resulting in the production of a functional full-length p53 protein. Finally, we showed that aminoglycoside treatment decreased the viability of cancer cells specifically in the presence of nonsense-mutated p53 gene. These results open possibilities of developing promising treatments of cancers linked with non-sense mutations in tumor suppressor genes. They show that molecules designed to induce stop-codon readthrough can be used to inhibit tumor growth and offer a rational basis for developing new personalized strategies that could diversify the existing arsenal of cancer therapies.  相似文献   

7.
Gene selective suppression of nonsense termination using antisense agents   总被引:1,自引:0,他引:1  
An estimated one third of all inherited genetic disorders and many forms of cancer are caused by premature (nonsense) termination codons. Aminoglycoside antibiotics are candidate drugs for a large number of such genetic diseases; however, aminoglycosides are toxic, lack specificity and show low efficacy in this application. Because translational termination is an active process, we considered that steric hindrance by antisense sequences could trigger the ribosome's "default mode" of readthrough when positioned near nonsense codons. To test this hypothesis, we performed experiments using plasmids containing a luciferase reporter with amber, ochre and opal nonsense mutations within the luxB gene in Escherichia coli. The nonspecific termination inhibitors gentamicin and paromomycin and six antisense peptide nucleic acids (PNA) spanning the termination region were tested for their potential to suppress the luxB mutation. Gentamicin and paromomycin increased luciferase activity up to 2.5- and 10-fold, respectively. Two of the PNAs increased Lux activity up to 2.5-fold over control levels, with no significant effect on cell growth or mRNA levels. Thus, it is possible to significantly suppress nonsense mutations within target genes using antisense PNAs. The mechanism of suppression likely involves enhanced readthrough, but this requires further investigation. Nonsense termination in human cells may also be susceptible to suppression by antisense agents, providing a new approach to address numerous diseases caused by nonsense mutations.  相似文献   

8.
Ten percent of human hereditary diseases are linked to nonsense mutations (premature termination codon). These mutations lead to premature translation termination, trigger the synthesis of a truncated protein and possibly lead to mRNA degradation by the NMD pathway (nonsense mediated mRNA decay). For the past ten years, therapeutic strategies have emerged which attempt to use molecules that facilitate tRNA incorporation at premature stop codon (readthrough), thus allowing for the synthesis of a full length protein. Molecules currently used for this approach are mostly aminoglycoside antibiotics (gentamicin, amikacin…) that bind the decoding center of the ribosome. This therapeutic approach has been studied for various genetic diseases including Duchenne muscular dystrophy (DMD) and cystic fibrosis. The feasibility of this approach depends on induced readthrough level, mRNA quantity, re-expressed protein functionality and characteristics of each disease.  相似文献   

9.
Two competing events, termination and readthrough (or nonsense suppression), can occur when a stop codon reaches the A-site of a translating ribosome. Translation termination results in hydrolysis of the final peptidyl-tRNA bond and release of the completed nascent polypeptide. Alternatively, readthrough, in which the stop codon is erroneously decoded by a suppressor or near cognate transfer RNA (tRNA), results in translation past the stop codon and production of a protein with a C-terminal extension. The relative frequency of termination versus readthrough is determined by parameters such as the stop codon nucleotide context, the activities of termination factors and the abundance of suppressor tRNAs. Using a sensitive and versatile readthrough assay in conjunction with RNA interference technology, we assessed the effects of depleting eukaryotic releases factors 1 and 3 (eRF1 and eRF3) on the termination reaction in human cell lines. Consistent with the established role of eRF1 in triggering peptidyl-tRNA hydrolysis, we found that depletion of eRF1 enhances readthrough at all three stop codons in 293 cells and HeLa cells. The role of eRF3 in eukarytotic translation termination is less well understood as its overexpression has been shown to have anti-suppressor effects in yeast but not mammalian systems. We found that depletion of eRF3 has little or no effect on readthrough in 293 cells but does increase readthrough at all three stop codons in HeLa cells. These results support a direct role for eRF3 in translation termination in higher eukaryotes and also highlight the potential for differences in the abundance or activity of termination factors to modulate the balance of termination to readthrough reactions in a cell-type-specific manner.  相似文献   

10.
Enhanced stop codon readthrough is a potential treatment strategy for diseases caused by nonsense mutations. Here, we compare readthrough levels induced by three types of factors: aminoglycoside antibiotics, suppressor tRNAs, and factors decreasing translation termination efficiency. We show that the highest levels of readthrough were obtained by prolonged treatment with aminoglycosides and suppressor tRNAs, whereas prolonged depletion of release factors induced only a moderate increase in readthrough. We discuss the benefits and inconvenients of the three types of factors for their use in the therapy of diseases caused by premature stop codons.  相似文献   

11.
Sequences in certain mRNAs program the ribosome to undergo a noncanonical translation event, translational frameshifting, translational hopping, or termination readthrough. These sequences are termed recoding sites, because they cause the ribosome to change temporarily its coding rules. Cis and trans-acting factors sensitively modulate the efficiency of recoding events. In an attempt to quantitate the effect of these factors we have developed a dual-reporter vector using the lacZ and luc genes to directly measure recoding efficiency. We were able to confirm the effect of several factors that modulate frameshift or readthrough efficiency at a variety of sites. Surprisingly, we were not able to confirm that the complex of factors termed the surveillance complex regulates translational frameshifting. This complex regulates degradation of nonsense codon-containing mRNAs and we confirm that it also affects the efficiency of nonsense suppression. Our data suggest that the surveillance complex is not a general regulator of translational accuracy, but that its role is closely tied to the translational termination and initiation processes.  相似文献   

12.
The bacterial tmRNA·SmpB system facilitates recycling of stalled translational complexes in a process termed "ribosome rescue." During ribosome rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which targets the tagged polypeptide for degradation. Translational pausing also induces a variety of recoding events such as frameshifts, ribosome hops, and stop codon readthrough. To examine the interplay between recoding and ribosome rescue, we determined the various fates of ribosomes that pause during translation termination. We expressed a model protein containing the C-terminal Asp-Pro nascent peptide motif (which interferes with translation termination) and quantified the protein chains produced by recoding and ssrA-peptide tagging. The nature and extent of translational recoding depended upon the codon for the C-terminal Pro residue, with CCU and CCC promoting efficient +1 frameshifting. In contrast, ssrA-peptide tagging was unaffected by C-terminal Pro coding. Moreover, +1 frameshifting was not suppressed by tmRNA·SmpB activity, suggesting that recoding and ribosome rescue are not competing events. However, cells lacking ribosomal protein L9 (ΔL9) exhibited a significant increase in recoding and a concomitant decrease in ssrA-peptide tagging. Pulse-chase analysis revealed that pre-termination ribosomes turn over more rapidly in ΔL9 cells, suggesting that increased recoding alleviates the translational arrest. Together, these results indicate that tmRNA·SmpB does not suppress transient ribosome pauses, but responds to prolonged translational arrest.  相似文献   

13.
The suppression of stop codons (termed translational readthrough) can be caused by a decreased accuracy of translation elongation or a reduced efficiency of translation termination. In previous studies, the inability to determine the extent to which each of these distinct processes contributes to a readthrough phenotype has limited our ability to evaluate how defects in the translational machinery influence the overall termination process. Here, we describe the combined use of misincorporation and readthrough reporter systems to determine which of these mechanisms contributes to translational readthrough in Saccharomyces cerevisiae. The misincorporation reporter system was generated by introducing a series of near-cognate mutations into functionally important residues in the firefly luciferase gene. These constructs allowed us to monitor the incidence of elongation errors by monitoring the level of firefly luciferase activity from a mutant allele inactivated by a single missense mutation. In this system, an increase in luciferase activity should reflect an increased level of misincorporation of the wild-type amino acid that provides an estimate of the overall fidelity of translation elongation. Surprisingly, we found that growth in the presence of paromomycin stimulated luciferase activity for only a small subset of the mutant proteins examined. This suggests that the ability of this aminoglycoside to induce elongation errors is limited to a subset of near-cognate mismatches. We also found that a similar bias in near-cognate misreading could be induced by the expression of a mutant form of ribosomal protein (r-protein) S9B or by depletion of r-protein L12. We used this misincorporation reporter in conjunction with a readthrough reporter system to show that alterations at different regions of the ribosome influence elongation fidelity and termination efficiency to different extents.  相似文献   

14.
15.
There is compelling evidence that aminoglycoside (AG) antibiotics can induce the mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, prolonged AG treatment can cause detrimental side effects in patients, including most prominently, ototoxicity. Recent mechanistic discussions have considered the relative contributions of mitochondrial and cytoplasmic protein synthesis inhibition to AG-induced ototoxicity. We show that AGs inhibit mitochondrial protein synthesis in mammalian cells and perturb cell respiration, leading to a time- and dose-dependent increase in superoxide overproduction and accumulation of free ferrous iron in mitochondria caused by oxidative damage of mitochondrial aconitase, ultimately leading to cell apoptosis via the Fenton reaction. These deleterious effects increase with the increased potency of AG to inhibit the mitochondrial rather than cytoplasmic protein synthesis, which in turn correlates with their ototoxic potential in both murine cochlear explants and the guinea pig in vivo. The deleterious effects of AGs were alleviated in synthetic derivatives specially designed for the treatment of genetic diseases caused by nonsense mutations and possessing low affinity toward mitochondrial ribosomes. This work highlights the benefit of a mechanism-based drug redesign strategy that can maximize the translational value of “readthrough therapy” while mitigating drug-induced side effects. This approach holds promise for patients suffering from genetic diseases caused by nonsense mutations.  相似文献   

16.
Translational regulation provides an efficient means to control the localization and production of proteins. The headcase (hdc) mRNA in Drosophila generates two overlapping proteins as a result of translational readthrough of an internal UAA stop codon. This readthrough event is necessary for the function of hdc as a branching inhibitor during tracheal development. By ectopic expression of different Hdc proteins in the trachea, we show that the long Hdc form alone, can function as a potent branching inhibitor whose activity is proportional to its amount. The suppression of termination in the hdc mRNA is not stop-codon dependent, suggesting that the readthrough does not involve codon specific suppressors. We have identified an 80 nucleotide sequence immediately downstream of the UAA, which is necessary and sufficient to confer termination readthrough in a heterologous mRNA. We present a novel mechanism of eukaryotic translational termination suppression that may regulate the amount of functional Hdc.  相似文献   

17.
In vivo 32P-labeled yeast proteins from wild type and ppz1 ppz2 phosphatase mutants were resolved by bidimensional electrophoresis. A prominent phosphoprotein, which in ppz mutants showed a marked shift to acidic regions, was identified by mixed peptide sequencing as the translation elongation factor 1Balpha (formerly eEF1beta). An equivalent shift was detected in cells overexpressing HAL3, a inhibitory regulatory subunit of Ppz1. Subsequent analysis identified the conserved Ser-86 as the in vivo phosphorylatable residue and showed that its phosphorylation was increased in ppz cells. Pull-down experiments using a glutathione S-transferase (GST)-EF1Balpha fusion version allowed to identify Ppz1 as an in vivo interacting protein. Cells lacking Ppz display a higher tolerance to known translation inhibitors, such as hygromycin and paromomycin, and enhanced readthrough at all three nonsense codons, suggesting that translational fidelity might be affected. Overexpression of a GST-EF1Balpha fusion counteracted the growth defect associated to high levels of Ppz1 and this effect was essentially lost when the phosphorylatable Ser-86 is replaced by Ala. Therefore, the Ppz phosphatases appear to regulate the phosphorylation state of EF1Balpha in yeast, and this may result in modification of the translational accuracy.  相似文献   

18.
The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the -1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable.  相似文献   

19.
Fusion proteins in biotechnology.   总被引:9,自引:0,他引:9  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号