首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The timing of root production is one of the parameters required for modelling the root system architecture. The objectives of this study are (1) to describe the rate of appearance of adventitious root primordia of maize and their rate of emergence out of the stem; (2) to test equations for the prediction of the rank of the phytomer on which root emergence occurs, in a wide range of field situations.Maize, cultivar Dea, was grown in controlled conditions and in the field in 1987, 1988, 1989 and 1991. Plants were regularly sampled and the following data were recorded: foliar stage, number of root primordia and number of emerged roots per phytomer. Root primordia were counted in transverse thin sections in the stem.At a single plant level, root primordia differentiation occurred sequentially on the successive phytomers, with no overlapping between two phytomers. The same was true for root emergence. Roots belonging to the same phytomer emerged at approximately the same time.At a plant population level, there was a linear relationship between the rank of the phytomer on which root primordia were differentiated and cumulated degree-days after sowing. A linear relationship was also observed between the rank of the phytomer on which roots were emerging and cumulated degree-days or foliar stage. In the range of field situations tested (several years, sowing dates and planting densities), both equations gave an accurate prediction of the timing of root emergence during the plant cycle.  相似文献   

2.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.  相似文献   

3.
《Nordic Journal of Botany》2007,25(3-4):167-175
Competition between Poa fawcettiae Vickery, the dominant native snowgrass, and the invasive herbaceous Achillea millefolium L., was examined in three glasshouse experiments. The first experiment investigated the potential for intra-specific competition in plants by growing them in pots with low and high density. The second experiment examined the potential for inter-specific competition at low, medium and high density. In the third experiment plants in pots where either roots or shoots of the species could not compete were compared to those where root and shoot competition was possible.
Achillea millefolium plants produced more than four times the biomass of P. fawcettiae plants. As a result the two species responded differently. In the A. millefolium monocultures both root and shoot biomass per plant declined at high density. By contrast, P. fawcettiae biomass was not affected. In mixed species pots, P. fawcettiae had no effect on the biomass of A . millefolium plants, while P. fawcettiae shoot and root biomass per plant decreased when grown with A. millefolium at all densities tested. Root competition from A. millefolium appears to be the main cause of the decrease in biomass of P. fawcettiae . The results imply that A. millefolium may have a competitive advantage over P. fawcettiae in the Australian Alps.  相似文献   

4.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

5.
Two 2 m3 plots of soil were prepared to different water contents and each isolated from surrounding soil by impermeable plastic material. Nine sorghum varieties were germinated in the plots and allowed to grow without further watering. Time-to-wilt after emergence was measured, and several parameters relating to water flow of the seedling and nodal roots were determined. There was a good positive correlation between both seminal root and nodal root relative conductvity and time-to-wilt. In a second experiment, plants were germinated and grown in pots, and after two weeks of growth without further watering were inspected for survival in the unwilted state. The per cent survival was calculated. There was a negative correlation of seminal root relative conductivity with per cent survival, and a high negative correlation of the number of seminal roots with per cent survival. It is concluded that high relative conductivity indicates drought resistance if the plants are growing with less restricted roots as in open soil, while if the plants are grown in pots the reverse is the case. Experiments linking root conductivity with survival conducted in pots are poor predictors of performance in less restricted rooting conditions.  相似文献   

6.
One of the alternative methods adopted in recent years is to use biotechnological approaches for improving the tree species. The synthetic seeds offer several advantages, e.g., easy handling, storability, reduced size of propagules, and transportability. Germplasm can be effectively stored in the form of synthetic seeds. A protocol has been developed for plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb. Nodal segments collected from basal sprouts of mature trees were encapsulated in calcium alginate beads. Inability of nodal segments entrapped in calcium alginate beads to form root was a major problem. To avoid this problem, an appropriate root induction treatment was given to nodal segments for 10 days, prior to encapsulation to allow formation of root primordia. For synthetic seeds production and subsequent conversion into plantlet, nodal segments with root primordia were encapsulated using sodium alginate and calcium chloride as gelling matrix. The best gel complexation was achieved using 3% sodium alginate and 75 mmol/L CaCl2 2H2O. Maximum percentage response (85%) for conversion of encapsulated nodal segments into plantlets was achieved on 1/2-MS medium without plant growth regulators, after 25 days of culture. The frequency of conversion of encapsulated nodal segments into plantlets affected by the concentration of sodium alginate, and the presence or absence of 1/2-MS nutrients in calcium alginate beads. Plantlets with well developed roots and shoots were transferred to pots containing autoclaved mixture of peat moss and soil (1:1). Plants were also established in pots. The conversion of encapsulated nodal segments into plantlets also occurred when calcium alginate beads having entrapped nodal segments were directly sown in autoclaved peat moss moistened with 1/2-MS0 medium. Out of 60 encapsulated nodal segments, in each experiments, stored at 4 degrees C for 30 days, 44 plants developed under in vitro conditions, and 27 on peat moss moistened with 1/2-MS0.  相似文献   

7.
Discaria americana is a xerophytic shrub which lives in symbiosis with an actinomycete of the genus Frankia. The objective of this paper was to investigate the effects of high soil Zn2+ concentrations on growth and nodulation on the association Discaria americana–Frankia with the aim of determining if this association is suitable for improving contaminated soils. Two experiments were performed in 1 dm3 pots containing soil and different Zn additions, from 0 to 2,000 mg Zn2+ kg−1 dry soil, with or without N fertilization. Zn additions strongly delayed shoot and root growth, but once growth was initiated, the biomass production of the plants supplied with moderate Zn amounts did not differ from the control plants. Zn reduced the final nodule number, but not the total nodule biomass. At the end of the experiment only the highest Zn treatments showed a lower nodule weight than the control plants, while N addition completely inhibited nodulation. It is concluded than Zn reduces the number of Frankia infections, but once the actinomycete is inside the roots, nodules can continue growing according to plant demand for N, compensating the reduced nodule number with more biomass. On the other hand, there is a toxic effect of Zn itself on plants when present in very high concentrations.  相似文献   

8.
We tested whether plants allocate proportionately less biomass to roots in response to above-ground competition as predicted by optimal partitioning theory. Two population densities of Abutilon theophrasti were achieved by planting one individual per pot and varying spacing among pots so that plants in the two densities experienced the same soil volume but different degrees of canopy overlap. Density did not affect root:shoot ratio, the partitioning of biomass between fine roots and storage roots, fine root length, or root specific length. Plants growing in high density exhibited typical above-ground responses to neighbours, having higher ratios of stem to leaf biomass and greater leaf specific area than those growing in low density. Total root biomass and shoot biomass were highly correlated. However, storage root biomass was more strongly correlated with shoot biomass than was fine-root biomass. Fine-root length was correlated with above-ground biomass only for the small subcanopy plants in crowded populations. Because leaf surface area increased with biomass, the ratio between absorptive root surface area and transpirational leaf surface area declined with plant size, a relationship that could make larger plants more susceptible to drought. We conclude that A. theophrasti does not reallocate biomass from roots to shoots in response to above-ground competition even though much root biomass is apparently involved in storage and not in resource acquisition.  相似文献   

9.
The root system of a rice plant (Oryza sativa L.) consists of numerous nodal roots and their laterals. The growth direction of these nodal roots affects the spatial distribution of the root system in soil, which seems to relate to yield and lodging resistance. The growth angle of a nodal root varies with the type and timing of emergence of the nodal root. The body of a rice plant can be recognized as an integrated set of shoot units, each unit consisting of an internode with a leaf and several roots. Nodal roots formed at the apical part of a shoot unit often elongate horizontally, whereas those formed at the basal part of the shoot unit show various growth directions depending on both the growth stages of the plant and the environmental conditions. Moreover, nodal roots that emerge from the most basal shoot unit of a tiller are usually thick and grow downwards. External factors such as planting density and nitrogen application affect the growth direction of nodal roots, probably partly because of the changing tillering pattern of the shoot. In addition to the growth angle of nodal roots, size of nodal roots may be another important factor determining the spatial distribution of the root system in soil.  相似文献   

10.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

11.
We investigated how shoot and root allocation in plants responds to increasing levels of competitive stress at different levels of soil fertility. In addition, we analyzed whether different responses were due to adaptive plasticity or should be attributed to ontogenetic drift. Plantago lanceolata plants were grown during 18 weeks at five plant densities and four nutrient supply levels in pots in the greenhouse. Thereafter root and shoot biomass was measured. There were clear negative effects of increasing plant densities on plant weights revealing strong intraspecific competition. At the lower N-treatments, the proportional allocation to root mass increased with increasing competitive stress, indicating the important role of belowground competition. At the higher N-supply rate, the relationship between competitive stress and shoot to root ratio was neutral. These responses could not be attributed to ontogenetic drift, but could only be explained by assuming adaptive plasticity. It was concluded that at lower N-supplies belowground competition dominates and leads to increased allocation to roots, while at the higher N-supply competition for soil resources and light had balanced impacts on shoot and root allocation. An alternative hypothesis explaining the observed pattern is that light competition has far less pronounced impacts on root–shoot allocation than nutrient deprival.  相似文献   

12.
1 The role of nutrient supply and defoliation on the competitive interactions between pot-grown Calluna vulgaris and Nardus stricta plants was investigated.WP leading adjustment
2 Young plants were grown alone and together in pots under a combination of fertilizer and defoliation treatments. After 18 months, parameters reflecting both above- and below-ground performance were measured, namely: total above-ground biomass, shoot nitrogen and phosphorus content, root length and the extent of mycorrhizal infection of the roots.
3 In the pots that received fertilizer, the shoot nutrient content and above-ground biomass of Nardus plants increased to a greater extent than those of Calluna plants; this effect was more marked for Nardus plants growing with Calluna plants than for those growing with other Nardus plants. In contrast , Calluna plants growing in competition with Nardus failed to respond to the addition of nutrients. However, in unfertilized pots, Calluna gained more above-ground biomass during the experimental period than Nardus.
4 Calluna had greater root length than Nardus , but Nardus had a higher proportion of its root length infected by mycorrhizal fungi. In both plants, the addition of fertilizer reduced the mycorrhizal infection and increased the root length. Nardus root length was decreased when grown in competition with Calluna only in pots where no nutrients were added. Defoliation decreased the extent of mycorrhizal infection in Calluna roots but not in those of Nardus; defoliation decreased the shoot nutrient content in Calluna plants, but not in Nardus plants.
5 These results suggest that the competitive balance between Nardus and Calluna may be altered by the addition of nutrients, and by defoliation, which may have serious implications for the future dominance of Calluna in heathland ecosystems, particularly those where nutrient inputs are increasing significantly or where grazing pressures are high.  相似文献   

13.
垂直方向磷素竞争对杉木根系生长及生物量分配的影响   总被引:2,自引:0,他引:2  
针对自然环境中有效磷养分主要分布于土壤表层而容易导致植物根系激烈竞争的问题,选择同一杉木(Cunninghamia lanceolata)无性系幼苗为研究对象,采用水平方向空间狭小而垂直方向空间大的室内盆栽模拟装置,以单株种植为对照,构建双株种植的竞争处理,通过设置3个供磷水平:不供磷处理(0 mg/kg KH_2PO_4)、低磷处理(6 mg/kg KH_2PO_4)和正常供磷处理(12 mg/kg KH_2PO_4),采用破坏性试验方式收获,分别在试验的前期(50 d)、中期(100 d)和后期(150 d)测定不同处理条件下杉木幼苗根系生物量与根系形态的变化,研究邻株杉木根系在垂直方向上对有限磷素资源的竞争策略。结果表明:竞争处理和供磷水平对杉木幼苗根系长度、平均直径等形态指标的影响存在交互作用(P0.05),对杉木幼苗生物量分配、比根长等指标的影响均不存在明显的交互作用(P0.05)。竞争处理中杉木根系形态增量均明显高于非竞争处理的单株幼苗,且随着胁迫时间的增加,根系形态增量均呈现显著的上升趋势,其中在胁迫中期和后期的增量明显高于前期,且邻株竞争处理明显提高了杉木的比根长,提升了根系觅磷的能力;随着供磷水平的提高,根表面积和根体积增量大体上呈现先上升后下降的趋势。与非竞争处理相比,竞争条件下杉木地上部生物积累量差异不明显,而根系生物量、根冠比均低于非竞争处理的单株幼苗。  相似文献   

14.
A wastewater culture system was designed to study the root growth of eight species of wetland plants with two different root types. The system included a plastic barrel for holding the wastewater and a foam plate for holding the plant. The results indicated that the root growth of the plants with fibril roots was faster than that of the plants with rhizomatic roots. The species with fibril roots had higher root number (1349 per plant) than species with rhizomatic roots (549 per plant) after ten weeks of cultivation. The average root biomass of plants with fibril roots was 11.3 g per plant, whereas that of plants with rhizomatic roots was 7.4 g per plant. Fine root biomass of diameter ≤ 1 mm constituted 51.9% of the total root biomass in plants with fibril roots, whereas it accounted for only 25.1% in plants with rhizomatic roots. The root surface area of the plants with fibril roots (6933 cm2 per plant) was markedly larger than that of the species with rhizomatic roots (1897 cm2 per plant). The species with rhizomatic roots showed a longer root lifespan (46.6 days) than those with fibril roots (34.8 days).  相似文献   

15.
Studying Arabidopsis thaliana (L.) Heynh. root development in situ at the whole plant level without affecting shoot development has always been a challenge. Such studies are usually carried out on individual plants, neglecting competition of a plant population, using hydroponic systems or Agar-filled Petri dishes. Those both systems, however, present some limitations, such as difficulty to study precisely root morphogenesis or time-limited culture period, respectively. In this paper, we present a method of Arabidopsis thaliana (L.) Heynh. cultivation in soil medium, named “Ara-rhizotron”. It allows the non-destructive study of shoot and root development simultaneously during the entire period of vegetative growth. In this system, roots are grown in 2D conditions, comparable to other soil cultures. Moreover, grouping several Ara-rhizotrons in a box enables the establishment of 3D shoot competition as for plants grown in a population. In comparison to a control culture grown in pots in the same environmental conditions, the Ara-rhizotron resulted in comparable shoot development in terms of dry mass, leaf area, number of leaves and nitrogen content. We used this new culture system to study the effect of irrigation modalities on plant development. We found that irrigation frequency only affected root partitioning in the soil and shoot nitrogen content, but not shoot or root growth. These effects appeared at the end of the vegetative growth period. This experiment highlights the opportunity offered by the Ara-rhizotron to point out tardy effects, affecting simultaneously shoot development and root architecture of plants grown in a population. We discuss its advantages in relation to root development and physiology, as well as its possible applications.  相似文献   

16.
The root system of plants is subject to fast cycles of renewal and decay within the growing season. In water and/or nutrient stress conditions, this turnover may become strategic for plant survival and productivity, but knowledge about its mechanisms is still insufficient. In order to investigate the effects of nitrogen fertilization on growth and turnover of sugar beet roots, an experiment was carried out over two growing seasons in northern Italy with two levels of N supply (0, 100 kg ha–1). Biomass production and partitioning were followed during growth, and fibrous root dynamics were inspected by means of computer-aided procedures applied to minirhizotron images.In conditions of N shortage, lower yields (storage roots) were associated with greater allocation of biomass to tap roots (final tap-root/shoot ratio = 5.6 vs. 4.1) and shallower distribution of fibrous root length density. The maximum depth of roots was not affected by N, but unfertilized plants reached it more slowly.The ratio of cumulative root dead length to produced length at the end of the growing period (TDL max/TPL max) was used as the most suitable approach for assessing overall root turnover. This ratio was greater in controls (0.73 vs. 0.50), which showed lower root longevity (–34% life-span on average), indicating that a greater proportion of root growth was renewed by unfertilized plants over the season.  相似文献   

17.
Summary In a split root experiment translocation of N from shoot to root was studied using15NO 3 . The three plant species selected for this experiment differed significantly with respect to root NRA. For lupin, maize and cocklebur about 80, 50 and 6% of all absorbed NO 3 was assmilated in the roots, respectively.Although NO 3 was reduced in the roots of lupin and maize plants to a greater extent than required for the roots' demand for organic N, a significant phloem flow of N from shoot to roots was found in these plants. Unexpectedly, for cocklebur, the plant with the very low root NRA, the fraction of total N present in the root that has been imported from the shoot was only half that as found for lupin and maize.  相似文献   

18.
The objective of this work was to determine if the impact of nitrogen (N) on the release of organic carbon (C) into the soil by roots (rhizodeposition) correlated with the effect of this nutrient on some variables of plant growth. Lolium multiflorum Lam. was grown at two levels of N supply, either in sterile sand percolated with nutrient solution or in non-sterile soil. The axenic sand systems allowed continuous quantification of rhizodeposition and accurate analysis of root morphology whilst the soil microcosms allowed the study of 14C labelled C flows in physico-chemical and biological conditions relevant to natural soils. In the axenic sand cultures, enhanced N supply strongly increased the plant biomass, the plant N content and the shoot to root ratio. N supply altered the root morphology by increasing the root surface area and the density of apices, both being significantly positively correlated with the rate of organic C release by plant roots before sampling. This observation is consistent with the production of mucilage by root tips and with mechanisms of root exudation reported previously in the literature, i.e. the passive diffusion of roots solutes along the root with increased rate behind the root apex. We proposed a model of root net exudation, based on the number of root apices and on root soluble C that explained 60% of the variability in the rate of C release from roots at harvest. The effects of N on plant growth were less marked in soil, probably related to the relatively high supply of N from non-fertiliser soil-sources. N fertilization increased the shoot N concentration of the plants and the shoot to root ratio. Increased N supply decreased the partitioning of 14C to roots. In parallel, N fertilisation increased the root soluble 14C and the 14C recovered in the soil per unit of root biomass, suggesting a stimulation of root exudation by N supply. However, due to the high concentration of N in our unfertilised plants, this stimulation was assumed to be very weak because no significant effect of N was observed on the microbial C and on the bacterial abundance in the rhizosphere. Considering the difficulties in evaluating rhizodeposition in non sterile soil, it is suggested that the root soluble C, the root surface area and the root apex density are additional relevant variables that should be useful to measure along with the variables that are commonly determined when investigating how plant functioning impacts on the release of C by roots (i.e soil C, C of the microbial biomass, rhizosphere respiration).  相似文献   

19.
Intra-specific competition with a primary focus on root competition between plants living in an area with low resource levels, was studied using the natural monotypic population of a desert annual plantEremobium aegyptiacum (Cruciferae). We tested the effect of neighboring distance on shoot and root biomass, and such root parameters as root length, diameter of root neck, number of first order lateral roots and number of lateral roots per unit of main root length. Our results indicate a strong negative relationship between neighboring plant density and such plant parameters as shoot and root biomass, and root neck diameter. The number of first order lateral roots and the number of lateral roots per unit of main root length were negatively related to the distance between neighboring plants. Contrary to predictions, there was no influence of competition on node distribution: neither root overlap nor root avoidance was observed in pairs of adjacent plants.  相似文献   

20.

Background and Aims

Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant''s life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions.

Methods

Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately.

Key Results

When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size.

Conclusions

Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号