首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence of T. utilis tRNATyr has been modified to have a deletion or substitution of the "conserved" nucleotide sequence Gm18-G19 in the D-loop by enzymatic procedures in vitro. Conformations of the variant tRNAs were analyzed by measuring melting profiles and electrophoretic mobilities in "native" polyacrylamide gels, and by examining the RNase T1 digestion patterns in sequencing gels. The results obtained shed light on the importance of the interaction between the sequence Gm18-G19 and nucleotides in the T psi C-loop (probably psi 57-C58) for the maintenance of the total conformation of tRNATyr in solution. The association of D-loop and T psi C-loop regions in the variant tRNATyrs is slightly relaxed even at room temperature and melting occurred at temperatures higher than 40 degrees C. The relationship between the tertiary structure of the variant tRNA and its aminoacylation capacity was assayed at various temperatures. The results indicate that highly ordered tertiary structure is needed for tRNATyr to be fully aminoacylated.  相似文献   

2.
rRNA(Gm)methyltransferase from an extreme thermophile, Thermus thermophilus HB 27 specifically methylates the 2'-OH of the ribose ring of G18 in the invariant G18-G19 sequence in the D loop of tRNA. The interaction site on tRNA was presumed to be the D loop and stem structure. Destruction of tertiary structure of tRNA caused by heat resulted in a great decrease in the acceptor activity of methyl group. It was suggested by CD measurement that a conformational change of tRNA occurs when it forms an equimolar complex with Gm-methylase.  相似文献   

3.
An efficient method for replacement of nucleotide sequences in the D-loop of T. utilis tRNATyr has been developed. An abnormal tRNATyr lacking in tetranucleotide D16-D-Gm-G19 in its D-loop has been reconstructed by this method and shown to accept tyrosine to about 55% of the aminoacylation level observed for intact tRNATyr. This suggests that the deleted sequence itself is not essential for recognition by TyrRS but a conformational instability of the tRNA possibly caused by the disruption of tertiary interactions between the D-loop and T psi C-loop might have influenced the forward reaction rate leading to the decreased level of aminoacylation.  相似文献   

4.
Genetic analysis of the processing of a spliced tRNA.   总被引:25,自引:9,他引:16       下载免费PDF全文
  相似文献   

5.
Human tyrosyl-tRNA synthetase from mitochondria (mt-TyrRS) presents dual sequence features characteristic of eubacterial and archaeal TyrRSs, especially in the region containing amino acids recognizing the N1-N72 tyrosine identity pair. This would imply that human mt-TyrRS has lost the capacity to discriminate between the G1-C72 pair typical of eubacterial and mitochondrial tRNATyr and the reverse pair C1-G72 present in archaeal and eukaryal tRNATyr. This expectation was verified by a functional analysis of wild-type or mutated tRNATyr molecules, showing that mt-TyrRS aminoacylates with similar catalytic efficiency its cognate tRNATyr with G1-C72 and its mutated version with C1-G72. This provides the first example of a TyrRS lacking specificity toward N1-N72 and thus of a TyrRS disobeying the identity rules. Sequence comparisons of mt-TyrRSs across phylogeny suggest that the functional behavior of the human mt-TyrRS is conserved among all vertebrate mt-TyrRSs.  相似文献   

6.
Solution structure of a tRNA with a large variable region: yeast tRNASer   总被引:15,自引:0,他引:15  
Different chemical reagents were used to study the tertiary structure of yeast tRNASer, a tRNA with a large variable region: ethylnitrosourea, which alkylates the phosphate groups; dimethylsulphate, which methylates N-7 of guanosine and N-3 of cytosine; and diethylpyrocarbonate, which modifies N-7 of adenine. The non-reactivity of N-3 of cytidine 47:1, 47:6, 47:7 and 47:8 and the reactivity of cytidine 47:3 confirms the existence of a variable stem of four base-pairs and a short variable loop of three residues. For the N-7 positions in purines, accessible residues are G1, G10, Gm18, G19, G30, I34, G35, A36, i6A37, G45, G47, G47:5, G47:9 and G73. The protection of N-7 atoms of residues G9, G15, A21, A22 and G47:9 reflects the tertiary folding. Strong phosphate protection was observed for P8 to P11, P20:1 to P22, P48 to P50 and for P59 and P60. A model was built on a PS300 graphic system on the basis of these data and its stereochemistry refined. While trying to keep most tertiary interactions, we adapted the tertiary folding of the known structures of tRNAAsp and tRNAPhe to the present sequence and solution data. The resulting model has the variable arm not far from the plane of the common L-shaped structure. A generalization of this model to other tRNAs with large variable regions is discussed.  相似文献   

7.
Expression of a X. laevis tRNATyr gene in mammalian cells.   总被引:20,自引:4,他引:16       下载免费PDF全文
Expression of a X. laevis tRNATyr gene has been studied in mammalian cells. This tRNATyr gene has a 13 base intervening sequence adjacent to its anticodon. A fragment containing the tRNATyr gene was cloned into the late region of SV40. Cells infected with a recombinant virus stock vastly overproduce a tRNATyr that is properly spliced, processed and modified. It was also found that the X. laevis tRNATyr is identical or nearly identical to an endogenous tRNATyr of monkey kidney cells. The possibility of using the X. laevis tRNATyr gene to create an amber suppressor for mammalian cells is discussed.  相似文献   

8.
The genome of the human immunodeficiency virus type-1 (HIV-1) contains a stretch of approximately 120 nucleotides known as the psi-site that is essential for RNA packaging during virus assembly. These nucleotides have been proposed to form four stem-loops (SL1-SL4) that have both independent and overlapping functions. Stem-loop SL2 is important for efficient recognition and packaging of the full-length, unspliced viral genome, and also contains the major splice-donor site (SD) for mRNA splicing. We have determined the structure of the 19-residue SL2 oligoribonucleotide by heteronuclear NMR methods. The structure is generally consistent with the most recent of two earlier secondary structure predictions, with residues G1-G2-C3-G4 and C6-U7 forming standard Watson Crick base-pairs with self-complementary residues C16-G17-C18-C19 and A12-G13, respectively. However, residue A15, which is located near the center of the stem, does not form a predicted bulge, and residues A5 and U14 do not form an expected Watson-Crick base-pair. Instead, these residues form a novel A5-U14-A15 base-triple that appears to be stabilized by hydrogen bonds from A15-H61 and -H62 to A5-N1 and U14-O2, respectively; from A5-H61 to U14-O2, and from C16-H42 to U14-O2'. A kink in the backbone allows the aromatic rings of the sequential U14-A15 residues to be approximately co-planar, adopting a stable "platform motif" that is structurally similar to the A-A (adenosine) platforms observed in the P4-P6 ribozyme domain of the Tetrahymena group I intron. Platform motifs generally function in RNA by mediating long-range interactions, and it is therefore possible that the A-U-A base-triple platform mediates long-range interactions that either stabilize the psi-RNA or facilitate splicing and/or packaging. Residue G8 of the G8-G9-U10-G11 tetraloop is stacked above the U7-A12 base-pair, and the remaining tetraloop residues are disordered and available for potential interactions with either other RNA or protein components.  相似文献   

9.
Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.  相似文献   

10.
A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.  相似文献   

11.
The nucleotide sequences of two species of tyrosine accepting tRNA from the eukaryotic green alga Scenedesmus obliquus have been determined. The sequence of the cytoplasmic tRNATyr is: (sequence in text) This is the first chloroplast tRNATyr species to be sequenced.  相似文献   

12.
13.
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.  相似文献   

14.
Aluminum (Al) toxicity is an important abiotic stress that affects soybean production in acidic soils throughout the world. Development of Al-tolerant cultivars is an efficient and environmentally friendly solution to the problem. A previous report identified quantitative trait loci (QTL) for Al tolerance inherited from PI 416937, using restriction fragment length polymorphism markers, in a population of Young × PI 416937. The population was genotyped with 162 simple sequence repeats to enhance the power of QTL detection and enable the selection of candidate genes for functional marker development. Two QTL that explained 54 % of the phenotypic variation in root extension under Al stress conditions (HIAL) were refined on chromosomes (chr) Gm08 and Gm16. Three QTL located on chr Gm08, Gm16 and Gm19 explained 59 % of the phenotypic variation in root extension as a percent of control (PC). Two major QTL, designated qAL_HIAL_08 and qAL_PC_08, controlling HIAL and PC, respectively, were mapped to the same genomic region on chr Gm08 and inherited their favorable allele from PI 416937. These QTL explained 45 and 41 % of phenotypic variation in HIAL and PC, respectively. Six homologues for citrate synthase (CS) genes were found in the soybean genome sequence at chr Gm02, Gm08, Gm14, Gm15, and Gm18. Sixteen single nucleotide polymorphisms (SNPs) were identified in the CS homologue on chr Gm08. A SimpleProbe assay of Glyma08g42400-SNP was developed for the major QTL on chr Gm08. The SNPs identified from this region could be used for marker-assisted selection of Al tolerance.  相似文献   

15.
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces.  相似文献   

16.
J H Kim  A G Marshall 《Biochemistry》1990,29(3):632-640
Three different fragments of Bacillus megaterium ribosomal 5S RNA have been produced by enzymatic cleavage with ribonuclease T1. Fragment A consists of helices II and III, fragment B contains helix IV, and fragment C contains helix I of the universal 5S rRNA secondary structure. All (eight) imino proton resonances in the downfield region (9-15 ppm) of the 500-MHz proton FT NMR spectrum of fragment B have been identified and assigned as G80.C92-G81.C91-G82.C90-A83.++ +U89-C84.G88 and three unpaired U's (U85, U86, and U87) in helix IV by proton homonuclear Overhauser enhancement connectivities. The secondary structure in helix IV of the prokaryotic loop is completely demonstrated spectroscopically for the first time in any native or enzyme-cleaved 5S rRNA. In addition, G21.C58-A20.U59-G19.C60-A18.U61 in helix II, U32.A46-G31.C47-C30.G48-C29.G49 in helix III, and G4.C112-G5.C111-U6.G110 in the terminal stem (helix I) have been assigned by means of NOE experiments on intact 5S rRNA and its fragments A and C. Base pairs in helices I-IV of the universal secondary structure of B. megaterium 5S RNA are described.  相似文献   

17.
Y C Choi  H Busch 《Biochemistry》1978,17(13):2551-2560
The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences.  相似文献   

18.
19.
The nucleotide sequence of a particular T1 oligonucleotide found in 41S and 28S RNAs of several cellular cell lines (human, mouse, rat and chicken fibroblast) but absent in 45S ribosomal RNA has been deduced. Its primary structure : A-U-U*-G*-psi-U-C-A-C-C-C-A-C-U-A-A-U-A-Gp shows the presence of a modified G residue which explains the existence of this oligonucleotide in the T1 fingerprint of 41S RNA and 28S. Its absence on the 45S RNA T1 fingerprint is accounted for by a late modification.  相似文献   

20.
Bulk tRNA from yeast and Rat liver can be methylated in vitro with -adenosylmethionine and B, subtilis extracts. The sole product formed is 1-methyladenosine (m1A). This tRNA (adenine-1) methyltransferase converts quantitatively the 3'-terminal adenosine-residue in the dihydrouridine-loop of tRNAThr and tRNATyr from yeast into m1A. Out of 16 eucaryotic tRNAs with known sequences 6 accepted methyl groups, all at a molar ratio of 1. These tRNAs have in common an unpaired adenosine-residue at the specific site in the sequence Py-A-A+-G-G-C-m2G. Out of 12 tRNAs from E. coli 6 served as specific substrates. These E. coli tRNAs also have an unpaired adenosine-residue at the 3'-end of the D-loop. Besides restrictions in primary structure intact secondary and tertiary structure is important for recognition of the specific tRNAs by the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号