首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two forms of prolyl hydroxylase in L-929 flbroblasts. One is the enzymatically active tetramer having two α- and two β-subunits. The other is monomeric cross-reacting protein which is enzymatically inactive but is structurally related to β-subunit of the enzyme. Cultured L-929 fibroblasts at mid-log phase were labeled by 3H-labeled amino acid mixture and the radioactivity was chased for 24 h while cells were harvested and plated at higher cell densities in cultures. The results indicated that both α-subunit of the tetrameric prolyl hydroxylase and cross-reacting protein were labeled, but the β-subunit of the tetrameric active prolyl hydroxylase was not labeled until the cells were crowded for 24 h. Using immunofluorescent techniques with antibodies directed against pure tetrameric prolyl hydroxylase, capping or patching was observed when the cells were incubated at 37 °C. Also, it was found that phagosomes prepared from L-929 flbroblasts contained about 30% of total enzyme protein as determined immunologically but contained no significant prolyl hydroxylase activities. Labeling cells with 125I by lactoperoxidase, cross-reacting protein was labeled but both α- and β-subunits of tetrameric active prolyl hydroxylase were not labeled. The results indicate that cross-reacting protein can be utilized as the precursor of β-subunit by the cells to form tetrameric active prolyl hydroxylase and that cross-reacting protein is found associated with cytoplasmic membranes.  相似文献   

2.
3.
A purification of up to 4000-fold is reported for lysyl hydroxylase (EC 1.14.11.4) from extract of chick-embryo homogenate and one of about 300-fold from extract of chick-embryo cartilage. Multiple forms of the enzyme were observed during purification from whole chick embryos. In gel filtration the elution positions of the two main forms corresponded to average molecular weights of about 580000 and 220000. These two forms could also be clearly separated in hydroxyapatite chromatography. In addition, some enzyme activity was always eluted between the two main peaks both in gel filtration and in hydroxyapatite chromatography. The presence of the two main forms was also observed when purifying enzyme from chick embryo cartilage. Both forms of the enzyme hydroxylated lysine in arginine-rich histone, which does not contain any -X-Lys-Gly- sequence. No difference was found between the enzyme from whole chick embryos and from chick embryo cartilage in this respect. Lysyl hydroxylase was found to have affinity for concanavalin A, indicating the presence of some carbohydrate residues in the enzyme molecule. Lysyl and prolyl hydroxylase activities increased when the chick embryo homogenate was assayed in the presence of lysolecithin. Preincubation of the homogenate either with lysolecithin or with Triton X-100 increased lysyl hydroxylase activity in homogenate, and in the 1500 x g and 150000 x g supernatants, suggesting that the increase in the enzyme activity was due to liberation of the enzyme from the membranes. Divalent cations were found to inhibit the activity of lysyl and prolyl hydroxylases in vitro. An inhibition of about 50% was achieved with 15 mM calcium 60 muM copper and 3 muM zinc concentrations. The mode of inhibition was tested with Cu2+, and was found to be competitive with Fe2+.  相似文献   

4.
Prolyl hydroxylase activity in cultured L-929 cells was found to increase when cells grew from log phase to stationary phase and when cells were harvested at the mid-log phase and replated at higher cell densities. Cycloheximide and actinomycin D inhibited the cell density-dependent increase in prolyl hydroxylase activity indicating that the increase in prolyl hydroxylase activity required de novo synthesis of protein and RNA. Prolyl hydroxylase was purified from cultured L-929 cells and antibodies against the protein were raised in rabbits. The antibodies were used to demonstrate that L-929 cells contained two forms of prolyl hydroxylase: an enzymatically active, tetrameric form consisting of two alpha and two beta polypeptide chains and an enzymatically inactive form containing immunologically cross-reacting protein. The polypeptide chains alpha, beta and cross-reacting protein were obtained by immunoadsorption. Peptide map analysis indicated that cross-reacting protein was similar if not identical to beta in primary structure, and alpha was different from both beta and cross-reacting protein. The results suggested that the prolyl hydroxylase levels in cells or tissues may be regulated by new protein and/or RNA synthesis.  相似文献   

5.
The effect of hydralazine on several parameters of collagen biosynthesis has been studied in cultured human skin fibroblasts. Cells treated with hydralazine synthesized procollagen which was severely deficient in hydroxyproline and hydroxylysine, indicating inhibition of prolyl and lysyl hydroxylase reactions in the cell. Assays of prolyl and lysyl hydroxylase activities, however, revealed markedly increased levels in hydralazine-treated cells. The stimulatory effect of hydralazine could not be simulated in cell extracts, demonstrating its requirement for intact cells. The effect occurred slowly over a period of 96 h and was dependent on hydralazine concentration between 10 and 100 microM. This phenomenon was also observed in lysyl hydroxylase-deficient mutants. In both normal and mutant cells the relative magnitude of the hydralazine effect could be modified by ascorbic acid in the culture medium. Ascorbic acid increased the response of prolyl hydroxylase to hydralazine from 1.5- to 2-fold to 3- to 7-fold, whereas it decreased the response of lysyl hydroxylase to hydralazine from 4- to 8-fold to 2- to 3-fold. Total collagen synthesis was substantially reduced in hydralazine-treated cells; the time course and the dose-response relationship were similar to those observed for the hydroxylases. alpha, alpha'-Dipyridyl, an iron chelator, mimicked these effects of hydralazine. The studies suggest the existence in cultured cells of a compensatory mechanism for overproduction of these crucial enzymes in collagen biosynthesis, a mechanism which remains functional in cells derived from patients afflicted with hydroxylysine-deficient collagen disease.  相似文献   

6.
In confluent cultures of 3T3 fibroblasts, incubated for 24 h with 1,10-phenanthroline at 10(-5)--10(-9) M, the activity of prolyl hydroxylase was significantly increased. 1,10-Phenanthroline was inhibitory at concentrations greater than 10(-4) M. The stimulatory effect of 1,10-phenanthroline manifests itself after 6 h incubation and increased with time up to 48 h. 2,2'-dipyridyl and 5,6-dimethyl-1,10-phenanthroline were also stimulatory; a nonchelating analog, 1,7-phenanthroline had no effect. Cycloheximide did not modify the 1,10-phenanthroline effect. The stimulatory effect does not seem to depend on the shift of an inactive precursor of prolyl hydroxylase to an active form because 1,10-phenanthroline was shown to be ineffective in logarithmically growing cells. While dialysis of washed and homogenized cells significantly increased prolyl hydroxylase activity in cell extracts, undialyzed 1,10-phenanthroline treated samples exhibited higher prolyl hydroxylase activity than dialyzed controls. These data suggested to us that 1,10-phenanthroline and other chelating agents may be forming complexes with certain metal ions or protein-metal ions which are inhibitory towards prolyl hydroxylase.  相似文献   

7.
We have investigated inhibitory mechanisms of hypoxic activation of HIF-1alpha by nitric oxide (NO). Using a Hep3B cell-derived cell line, HRE7 cells, we found that the inhibition of HIF-1alpha activity by NO requires a substantial amount of oxygen, albeit at a lower level. We further investigated the effect of NO on the binding activity of the von Hippel-Lindau tumor suppressor protein (pVHL) to the N-terminal activation domain (NAD) overlapping the oxygen-dependent degradation domain (ODD) of HIF-1alpha, because this reaction involves prolyl hydroxylation in NAD that requires oxygen. Although we could not detect any binding activity when NAD was incubated with whole cell extracts from cells treated with CoCl(2) or desferrioxamine, the binding capacity was manifested when Hep3B cells were treated together with NO. This activation was also observed when whole cell extracts from CoCl(2)-treated cells were incubated with NO. The prolyl hydroxylase from Hep3B cells treated with CoCl(2) was partially purified about 80-fold, and several enzymatic properties were examined. The enzyme required ferrous ion and 2-oxoglutaric acid. Strong activation of the prolyl hydroxylase by NO was observed without further addition of ferrous ion.  相似文献   

8.
In confluent cultures of 3T3 fibroblasts, incubated for 24 h with 1,10-phenanthroline at 10?5–10?9 M, the activity of prolyl hydroxylase was significantly increased. 1,10-Phenanthroline was inhibitory at concentrations greater than 10?4 M. The stimulatory effect of 1,10-phenanthroline manifets itself after 6 h inhubation and increased with time up to 48 h. 2,2′-dipyridyl and 5,6-dimethyl-1-1,10-phemamthroline were also stimulatory; a nonchelating analog, 1,7-phenanthroline had no effect.Cycloheximide did not modify the 1,10-phenanthroline effect. The stimulatory effect does not seem to depend on the shift of an inactive precursor of prolyl hydroxylase to an active form because 1,10-phenanthroline was shown to be ineffective in logarithmically growing cells.While dialysis of washed and homogenized cells significantly increased prolyl hydroxylase activity in cell extracts, undialyzed 1,10-phenanthroline treated samples exhibited higher prolyl hydroxylase activity than dialyxed controls.These data suggested to us that 1,10-phenanthroline and other chelating agents may be forming complexes with certain metal ions or protein-metal ions which are inhibitory towards prolyl hydroxylase.  相似文献   

9.
When chick frontal bone cells in culture were exposed to d,l-3,4 dehydroproline, the specific activity of prolyl hydroxylase was markedly reduced, but the concentration of the protein antigenically related to prolyl hydroxylase was not decreased. The specific activity of purified prolyl hydroxylase from cells grown in d,l-3,4 dehydroproline was significantly lower than that of control cells. Preincubation of a homogeneous preparation of chick embryo prolyl hydroxylase with collagenous peptides containing [14C]d,l-3,4 dehydroproline resulted in a time-dependent decrease in the enzymatic activity. These observations suggest that the in vivo reduction in prolyl hydroxylase activity by dehydroproline could be either due to an interaction of the enzyme with collagenous peptides containing dehydroproline and/or the synthesis of an aberrant form of prolyl hydroxylase with decreased enzymatic activity.  相似文献   

10.
Morphological studies were carried out on fibroblasts from chick embryo tendons, cells which have been used in a number of recent studies on collagen biosynthesis. The cells were relatively rich in endoplasmic reticulum and contained a well-developed Golgi complex comprised of small vesicles, stacked membranes, and large vacuoles. Techniques were then devised for preparing cell fragments which were penetrated by ferritin-antibody conjuates but which retained the essential morphological features of the cells. Finally, the new procedures were employed to develop further information as to how collagen is synthesized. As reported elsewhere, preliminary studies with ferritin-labeled antibodies showed that prolyl hydroxylase was found in the endoplasmic reticulum of freshly isolated fibroblasts and that procollagen is found in both the cisternae of the endoplasmic reticulum and the large Golgi vacuoles. In the experiments described here, the cells were manipulated so that amino acids continued to be incorporated into polypeptide chains but assembly of the molecule was not completed because hydroxylation of prolyl and lysyl residues was prevented. The results indicated that these manipulations produced no change in the distribution of prolyl hydroxylase. Examination of the cells with ferritin conjugated to antibodies which reacted with protocollagen, the unhydroxylated form of procollagen, demonstrated that protocollagen was retained in the cisternae of the endoplasmic reticulum during inhibition of the prolyl and lysyl hydroxylases. Assays for prolyl hydroxylase with an immunologic technique demonstrated that although the enzyme is found within the endoplasmic reticulum, it is not secreted along with procollagen. The observations provided further evidence for a special role for prolyl hydroxylase in the control of collagen biosynthesis.  相似文献   

11.
Significant levels of prolyl hydroxylase activity (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase; EC 1.14.11.2) have been found in freshly isolated hepatocytes prepared from normal or regenerated adult rat liver and primary non-proliferating monolayer cultures of these cells. Four days after partial hepatectomy, the intact regenerated liver contained two times the normal level of prolyl hydroxylase activity. Freshly isolated hepatocytes contained 24% of the total prolyl hydroxylase activity in normal liver and 47% of that in regenerated liver. Upon incubation of hepatocytes for 24 h in a chemically defined culture medium containing insulin, prolyl hydroxylase activity rose 2- to 3-fold, and gradually declined during the next 48 h. The rise in prolyl hydroxylase activity was blocked by addition of cycloheximide to the culture medium. The presence of prolyl hydroxylase activity in hepatocyte cultures was not likely due to contamination with non-parenchymal liver cells. The latter cells contained less than 20% of the total enzyme activity recovered in all cells isolated from the liver. Furthermore, prolyl hydroxylase was localized by immunofluorescence uniformly to the hepatocytes in culture. Cultured hepatocytes converted [14C]proline to [14C]hydroxyproline at rates comparable to those reported for whole liver. However, only a small portion of the hydroxyproline containing product was present as collagen protein, suggesting its rapid degradation in culture. We conclude that the liver parenchymal cell may actively participate in collagen synthesis and possibly in collagen degradation.  相似文献   

12.
1. Subcellular fractions of freshly isolated matrix-free embryonic chick tendon and sternal cartilage cells have been characterized by chemical analysis, electron microscopy and the location of specific marker enzymes. These data indicate the fractions to be of a high degree of purity comparable with those obtained from other tissues, e.g. liver and kidney. 2. When homogenates were assayed for protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase activities, addition of Triton X-100 (0.1%, w/v) was found to stimulate enzyme activities by up to 60% suggesting that the enzymes were probably membrane-bound. 3. Assay of subcellular fractions obtained by differential centrifugation for protocollagen prolyl hydroxylase activity indicated the specific activity to be highest in the microsomal fraction. Similar results were obtained for protocollagen lysyl hydroxylase activity. 4. Submicrosomal fractions obtained by discontinuous sucrose-gradient centrifugation were assayed for the two enzymes and protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase were found to be associated almost exclusively with the rough endoplasmic reticulum fraction in both tendon and cartilage cells.  相似文献   

13.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

14.
An improved procedure was used to assay prolyl hydroxylase activity in both early-log and late-log L-929 fibroblasts grown on plastic surfaces. When 40 μg/ml of ascorbate was added to early-log phase cultures, the rate of hydroxy-[14C] proline synthesis increased 2-fold within 4 h, but there was no change in prolyl hydroxylase activity per cell. The results indicated therefore that ascorbate did not “activate” prolyl hydroxylase in the sense of converting inactive enzyme protein to active enzyme protein. Instead ascorbate appeared to increase hydroxyproline synthesis in early-log L-929 fibroblasts because the prolyl hydroxylase reaction in such cells was limited by the availability of ascorbate or a similar cofactor. When 40 μg/ml of ascorbate was added to late-log phase cultures, there was essentially no effect on the rate of hydroxyl[14C]-proline synthesis or prolyl hydroxylase activity. The late-log phase cells, however, contained three times more enzyme activity and about two times more immuno-reactive enzyme protein than early-log phase cells. In addition, the rate of protein synthesis per cell in late-log phase cells was only one-tenth the rate in early-log phase cells. The results suggested that as the cells grew to confluency, collagen polypeptides were more completely hydroxylated in part because the rate of polypeptide synthesis decreased and at the same time prolyl hydroxylase activity per cell increased. The results appear to provide an alternate explanation for previous observations on the effects of ascorbate and “crowding” on hydroxy[roline synthesis in cultures of L-929 fibroblasts.  相似文献   

15.
The present study was undertaken to inquest the chemical activation of prolyl hydroxylase‐2 for the curtailment of hypoxia‐inducible factor‐1α and fatty acid synthase. It was well documented that hypoxia‐inducible factor‐1α and fatty acid synthase were overexpressed in mammary gland carcinomas. After screening a battery of compounds, BBAP‐2 was retrieved as a potential prolyl hydroxylase‐2 activator and validates its activity using ER + MCF‐7 cell line and n‐methyl‐n‐nitrosourea‐induced rat in vivo model, respectively. BBAP‐2 was palpable for the morphological characteristics of apoptosis along with changes in the mitochondrial intergrity as visualized by acridine orange/ethidium bromide and JC‐1 staining against ER + MCF‐7 cells. BBAP‐2 also arrest the cell cycle of ER + MCF‐7 cells at G2/M phase. Afterward, BBAP‐2 has scrutinized against n‐methyl‐n‐nitrosourea‐induced mammary gland carcinoma in albino Wistar rats. BBAP‐2 restored the morphological architecture when screened through carmine staining, haematoxylin and eosin staining, and scanning electron microscopy. BBAP‐2 also delineated the markers of oxidative stress favourably. The immunoblotting and mRNA expression analysis validated that BBAP‐2 has a potentialty activate the prolyl hydroxylase‐2 with sequential downregulating effect on hypoxia‐inducible factor‐1α and its downstream checkpoint. BBAP‐2 also fostered apoptosis through mitochondrial‐mediated death pathway. The present study elaborates the chemical activation of prolyl hydroxylase‐2 by which the increased expression of HIF‐1α and FASN can be reduced in mammary gland carcinoma.  相似文献   

16.
This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.  相似文献   

17.
Prolyl 4-hydroxylase (EC 1.14.11.2) is a key enzyme in collagen biosynthesis, its active form is a tetramer (alpha 2 beta 2). In L-929 fibroblasts in the log phase of culture there is a low level of active enzyme. When the cell culture reaches confluency, prolyl hydroxylase activity in cells increases by a process that requires de novo RNA and protein synthesis. The same result may be achieved by crowding the cells (replating log phase cells at the density of stationary phase cells). In the work reported here we further examined induction of the enzyme. RNA synthesis necessary for enzyme induction is complete 6 h after "crowding" while protein synthesis requires 12 h. Thymidine (0.2-0.5 mM) added to log phase cells will also cause enzyme induction to the level found in "crowded" or resting cells. We also looked at the decay of the enzyme activity after subculture. This occurs rapidly (enzyme half-life is 1-2 h) and is concurrent with the re-entry of resting cells into cell cycle; however, thymidine added at the time of subculture to block DNA synthesis does not prevent the loss of prolyl hydroxylase activity. These results suggest that when cells are not engaged in propagation, they begin to synthesize luxury proteins such as prolyl hydroxylase. However, the loss of prolyl hydroxylase during subculture is probably not a direct consequence of DNA synthesis.  相似文献   

18.
Collagen synthesis, hydroxylation of proline in collagen, and collagen secretion were studied in the contact-inhibited mouse fibroblast line, Balb 3T3; the Kirsten virus transformed line, Ki-3T3; and dibutyryl cAMP (dbcAMP)-treated Ki-3T3 cells, during the various phases of the growth cycle. Transformed cells in both logarithmic and stationary phase produced lower levels of collagen than the parent line but 85-90% of the theoretically possible hydroxyproline residues of the collagen were formed even when ascorbic acid was not added to the culture medium. Moreover, the transformed cells showed only about a 20% increase of collagen secretion upon addition of ascorbate. This was in contrast to the ascorbate requirement for maximal proline hydroxylation and the 2-3 fold stimulation of collagen secretion by ascorbate in the parent Balb 3T3 cells. Although dbcAMP treatment caused Ki-3T3 cells to assume a more normal morphology and increased the relative rate of collagen synthesis to levels similar to that of 3T3, such treatment did not restore an ascorbate requirement for proline hydroxylation or collagen secretion. The specific activity of the enzyme prolyl hydroxylase also was not affected by dbcAMP treatment although collagen synthesis was increased by such treatment. In addition, it was found that ascorbic acid was not effective in activating prolyl hydroxylase derived from Ki-3T3 or dbcAMP-treated Ki-3T3 cell cultures either in logarithmic phase or stationary phase. Ki-3T3 cultures did not accumulate ascorbic acid in cells or medium nor was ascorbic acid synthesized from the precursor 14C-glucuronate in cell homogenates. The results suggest that virally transformed Balb 3T3 cells acquire the capacity to synthesize a reducing cofactor for prolyl hydroxylase and that this function may be related to the increased glycolytic metabolism of these cells since neither cellular metabolism nor ascrobate-independent hydroxylation was altered by treatment with dbcAMP.  相似文献   

19.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 mug of enzyme protein per 10(8) cells and 40-50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein but only 15-20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and incultured tendon cells had the same apparent size and the same activity per mug of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme. When freshly isolated cells were incubated for 2 h in the presence of 40 mug per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 mug per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not icrease the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve "activation" of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

20.
Poly(ADP-ribose) prepared by incubating NAD+ with rat liver nuclei inhibited the hydroxylation reaction catalyzed by purified prolyl hydroxylase (proline,2-oxoglutarate dioxygenase, EC 1.14.11.2) in vitro. Near complete inhibition of the enzyme was seen in the presence of 6 nM (ADP-Rib)18 with a Ki(app) of 1.5 nM. The monomer unit of poly(ADP-ribose), adenosine diphosphoribose (ADP-Rib), was found to be a weak inhibitor. On the other hand, poly(ADP-ribose)-derived phosphoribosyl-AMP (PRib-AMP) and its dephosphorylated product, ribosyl-ribosyl-adenine (Rib-RibA), inhibited the enzyme in nanomolar concentrations (Ki(app) 16.25 nM). The order of inhibition was (ADP-Rib)18 greater than PRib-AMP, Rib-RibA much greater than ADP-Rib. These results suggested that the 1"----2' ribosyl-ribosyl moiety in these compounds was involved in the inhibition of the enzyme. The possibility that intracellular prolyl hydroxylase is regulated by the involvement of ADP-ribosylation reactions was examined in confluent cultures of skin fibroblast treated with 20 mM lactate. The activity of prolyl hydroxylase was stimulated by 145% over that of untreated cultures. In the lactate-treated cells, the level of NAD+ was lowered and the total ADP-ribosylation of cellular proteins reduced by 40%. These observations imply that the lactate-induced activation of cellular prolyl hydroxylase is mediated by a reduction in ADP-ribosylation and that the synthesis and degradation of ADP-ribose moiety(ies) may possibly regulate prolyl hydroxylase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号