首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 771 毫秒
1.
The ability of the two highly homologous Na+/Cl-dependent neutral amino acid transporters KAAT1 and CAATCH1, cloned from the midgut epithelium of the larva Manduca sexta, to transport different amino acids depends on the cotransported ion, on pH, and on the membrane voltage. Different organic substrates give rise to transport-associated currents with their own characteristics, which are notably distinct between the two proteins. Differences in amplitude, kinetics, and voltage dependence of the transport-associated currents have been observed, as well as different substrate selectivity patterns measured by radioactive amino acid uptake assays. These diversities represent useful tools to investigate the structural determinants involved in the substrate selectivity. To identify these regions, we built four chimeric proteins between the two transporters. These proteins, heterologously expressed in Xenopus laevis oocytes, were analyzed by two-electrode voltage clamp and uptake measurements. Initially, we exchanged the first three domains, obtaining the chimeras C3K9 and K3C9 (where numbers indicate the transmembrane domains and letters represent the original proteins), which showed electrophysiological and [3H]amino acid uptake characteristics resembling those of KAAT1 and CAATCH1, respectively. Subsequent substitution of the last four domains in C3K9 and K3C9 gave the proteins C3K5C4 and K3C5K4, which showed the same behavior as KAAT1 and CAATCH1 in electrophysiological and transport determinations. These results suggest that in KAAT1 and CAATCH1, only the central transmembrane domains (from 4 to 8) of the protein are responsible for substrate selectivity. structure and function; Manduca sexta  相似文献   

2.
KAAT1 is a neutral amino acid transporter activated by K+ or by Na+ (9). The protein shows significant homology with members of the Na+/Cl-dependent neurotransmitter transporter super family. E59G KAAT1, expressed in Xenopus oocytes, exhibited a reduced leucine uptake [20–30% of wild-type (WT)], and kinetic analysis indicated that the loss of activity was due to reduction of Vmax and apparent affinity for substrates. Electrophysiological analysis revealed that E59G KAAT1 has presteady-state and uncoupled currents larger than WT but no leucine-induced currents. Site-directed mutagenesis analysis showed the requirement of a negative charge in position 59 of KAAT1. The analysis of permeant and impermeant methanethiosulfonate reagent effects confirmed the intracellular localization of glutamate 59. Because the 2-aminoethyl methanethiosulfonate hydrobromid inhibition was not prevented by the presence of Na+ or leucine, we concluded that E59 is not directly involved in the binding of substrates. N-ethylmaleimide inhibition was qualitatively and quantitatively different in the two transporters, WT and E59G KAAT1, having the same cysteine residues. This indicates an altered accessibility of native cysteine residues due to a modified spatial organization of E59G KAAT1. The arginine modifier phenylglyoxal effect supports this hypothesis: not only cysteine but also arginine residues become more accessible to the modifying reagents in the mutant E59G. In conclusion, the results presented indicate that glutamate 59 plays a critical role in the three-dimensional organization of KAAT1. amino acid transport; structure/function; amino acid modifiers; Manduca sexta  相似文献   

3.
KAAT1 is a lepidopteran neutral amino acid transporter belonging to the NSS super family (SLC6), which has an unusual cation selectivity, being activated by K+ and Li+ in addition to Na+. We have previously demonstrated that Asp338 is essential for KAAT1 activation by K+ and for the coupling of amino acid and driver ion fluxes. By comparing sequences of NSS family members, site-directed mutagenesis, and expression in Xenopus laevis oocytes, we identified Lys102 as a residue likely to interact with Asp338. Compared with wild type, the single mutants K102V and D338E each showed altered leucine uptake and transport-associated currents in the presence of both Na+ and K+. However, in K102V/D338E double mutant, the K102V mutation reversed both the inhibition of Na+-dependent transport and the block in K+-dependent transport that characterize the D338E mutant. K+-dependent leucine currents were not observed in any mutants with D338E. In the presence of the oxidant Cu(II) (1,10-phenanthroline)3, we observed specific and reversible inhibition of K102C/D338C mutant, but not of the corresponding single cysteine mutants, suggesting that these residues are sufficiently close to form a disulfide bond. Thus both structural and functional evidence suggests that these two residues interact. Similar results have been obtained mutating the bacterial transporter homolog TnaT. Asp338 corresponds to Asn286, a residue located in the Na+ binding site in the recently solved crystal structure of the NSS transporter LeuTAa (41). Our results suggest that Lys102, interacting with Asp338, could contribute to the spatial organization of KAAT1 cation binding site and permeation pathway. residue interaction; oxidants; tertiary structure  相似文献   

4.
KAAT1 and CAATCH1 are amino acid transporters cloned from the intestine of the lepidoptera Manduca sexta.1,2 They are members of the SLC6/NSS family, which groups membrane proteins that use Na+, K+, and Cl- gradients for the coupled transport of amines and amino acids. The report of the atomic-resolution x-ray crystal structure of the eubacterium Aquifex aeolicus leucine transporter (AaLeuT)3 has contributed significantly to understanding of the structure–function relationship in NSS proteins. Transport by AaLeuT is Cl- independent, whereas many neurotransmitter:sodium symporters like serotonin transporter (SERT), GABA transporter (GAT1), dopamine transporter, and norephinephrine transporter, among others, are strongly Cl- dependent.4 A single Cl- ion is found bound to one of the extracellular loops, EL2 in AaLeuT. The Cl- is 20 Ã… away from the Na and leucine binding sites, and thus it is unclear whether this Cl- binding site is physiologically important. The nature of the association of Cl- ions with these proteins during transport remains to be resolved. The Cl- binding site of two members of the family, the serotonin transporter SERT 4 and the GABA transporter GAT1 5, has been recently modelled on the basis of their functional properties and by structural homology to AaLeuT. The analyses have highlighted the role of a serine residue, that in the Cl--independent AaLeuT corresponds to Glu 290, and of an asparagine (Asn 286) that also contributes to the coordination of Na+ in the Na1 binding site of AaLeuT. KAAT1 and CAATCH1 are able to transport different amino acids depending on the contransported cation (Na+ or K+) but their Cl- dependence is not completely defined yet. With the aim to clarify the role exerted by chloride in SLC6/NSS transporters, the Cl--dependence of KAAT1 and CAATCH1 have been investigated by the expression in Xenopus laevis oocytes and the measurement of induced amino acid uptakes. Despite KAAT1 and CAATCH1 posses the same residue of serine (Ser342, KAAT1 numbering) present in strictly chloride dependent transporters, their transport activities resulted weakly Cl--dependent compared to GAT1. By analysis of the pH dependence of the KAAT1 and CAATCH1 transport activity, we obtained more information to define their (particular) peculiar Cl- dependence.  相似文献   

5.
Ezrin is a member of ezrin, radixin, moesin (ERM) protein family that links F-actin to membranes. The NH2- and COOH-terminal association domains of ERM proteins, known respectively as N-ERMAD and C-ERMAD, participate in interactions with membrane proteins and F-actin, and intramolecular and intermolecular interactions within and among ERM proteins. In gastric parietal cells, ezrin is heavily represented on the apical membrane and is associated with cell activation. Ezrin-ezrin interactions are presumably involved in functional regulation of ezrin and thus became a subject of our study. Fluorescence resonance energy transfer (FRET) was examined with cyan fluorescent protein (CFP)- and yellow fluorescent protein (YFP)-tagged ezrin incorporated into HeLa cells and primary cultures of parietal cells. Constructs included YFP at the NH2 terminus of ezrin (YFP-Ez), CFP at the COOH terminus of ezrin (Ez-CFP), and double-labeled ezrin (N-YFP-ezrin-CFP-C). FRET was probed using fluorescence microscopy and spectrofluorometry. Evidence of ezrin oligomer formation was found using FRET in cells coexpressing Ez-CFP and YFP-Ez and by performing coimmunoprecipitation of endogenous ezrin with fluorescent protein-tagged ezrin. Thus intermolecular NH2- and COOH-terminal association domain (N-C) binding in vivo is consistent with the findings of earlier in vitro studies. After the ezrin oligomers were separated from monomers, FRET was observed in both forms, indicating intramolecular and intermolecular N-C binding. When the distribution of native ezrin as oligomers vs. monomers was examined in resting and maximally stimulated parietal cells, a shift of ezrin oligomers to the monomeric form was correlated with stimulation, suggesting that ezrin oligomers are the membrane-bound dormant form in gastric parietal cells. fluorescence resonance energy transfer; acid secretion; radixin; moesin; cytoskeleton; ERM family  相似文献   

6.
Proteases,glycosidases, and impermeant biotin derivatives were used incombination with antibodies to analyze the subcellular distribution andtransmembrane disposition of theNa+/H+exchanger NHE1. Both native human NHE1 in platelets and epitope-tagged rat NHE1 transfected into antiport-deficient cells were used for thesestudies. The results indicated that1) the entire population ofexchangers is present on the surface membrane of unstimulated platelets, ruling out regulation by recruitment of internal stores ofNHE1; 2) the putative extracellularloops near the NH2 terminus areexposed to the medium and contain all the N- andO-linked carbohydrates;3) by contrast, the putativeextracellular loops between transmembrane domains 9-10 and11-12 are not readily accessible from the outside and may befolded within the protein, perhaps contributing to an aqueous iontransport pathway; 4) the extreme COOH terminus of the protein was found to be inaccessible toextracellular proteases, antibodies, and other impermeant reagents,consistent with a cytosolic localization; and5) detachment of ~150 amino acidsfrom the NH2-terminal end of theprotein had little effect on the transport activity of NHE1.

  相似文献   

7.
Na+-dependent Cl/HCOexchange activity helps maintain intracellular pH (pHi)homeostasis in many invertebrate and vertebrate cell types. Ourlaboratory cloned and characterized a Na+-dependentCl/HCO exchanger (NDAE1) fromDrosophila melanogaster (Romero MF, Henry D, Nelson S, HartePJ, and Sciortino CM. J Biol Chem 275:24552-24559, 2000). In the present study we usedimmunohistochemical and Western blot techniques to characterize thedevelopmental expression, subcellular localization, and tissue distribution of NDAE1 protein in D. melanogaster. We haveshown that a polyclonal antibody raised against the NH2terminus of NDAE1 (CWR57) recognizes NDAE1 electrophysiologicallycharacterized in Xenopus oocytes. Moreover, our resultsbegin to delineate the NDAE1 topology, i.e., both the NH2and COOH termini are intracellular. NDAE1 is expressed throughoutDrosophila development in the central and peripheral nervoussystems, sensilla, and the alimentary tract (Malpighian tubules, gut,and salivary glands). Coimmunolabeling of larval tissues with NDAE1antibody and a monoclonal antibody to theNa+-K+-ATPase -subunit revealed that themajority of NDAE1 is located at the basolateral membranes of Malpighiantubule cells. These results suggest that NDAE1 may be a keypHi regulatory protein and may contribute to basolateralion transport in epithelia and nervous system of Drosophila.

  相似文献   

8.
A new eukaryotic nutrient amino acid transporter has been cloned from an epithelium that is exposed to high voltages and alkaline pH. The full-length cDNA encoding this novel CAATCH1 (cation-anion-activated Amino acid transporter/channel) was isolated using a polymerase chain reaction-based strategy, and its expression product in Xenopus oocytes displayed a combination of several unique, unanticipated functional properties. CAATCH1 electrophysiological properties resembled those of Na(+),Cl(-)-coupled neurotransmitter amine transporters, although CAATCH1 was cloned from a gut absorptive epithelium rather than from an excitable tissue. Amino acids such as l-proline, l-threonine, and l-methionine elicited complex current-voltage relationships in alkaline pH-dependent CAATCH1 that were reminiscent of the behavior of the dopamine, serotonin, and norepinephrine transporters (DAT, SERT, NET) in the presence of their substrates and pharmacological inhibitors such as cocaine or antidepressants. These I-V relationships indicated a combination of substrate-associated carrier current plus an independent CAATCH1-associated leakage current that could be blocked by certain amino acids. However, unlike all structurally related proteins, CAATCH1 activity is absolutely independent of Cl(-). Unlike related KAAT1, CAATCH1 possesses a methionine-inhibitable constitutive leakage current and is able to switch its narrow substrate selectivity, preferring threonine in the presence of K(+) but preferring proline in the presence of Na(+).  相似文献   

9.
Functional ion channels in mouse bone marrow mesenchymal stem cells   总被引:1,自引:0,他引:1  
Bone marrow mesenchymal stem cells (MSCs) are used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not fully understood. The present study was to investigate the functional ionic channels in undifferentiated mouse bone marrow MSCs using whole cell patch-voltage clamp technique, RT-PCR, and Western immunoblotting analysis. We found that three types of ionic currents were present in mouse MSCs, including a Ca2+-activated K+ current (IKCa), an inwardly rectifying K+ current (IKir), and a chloride current (ICl). IKir was inhibited by Ba2+, and IKCa was activated by the Ca2+ ionophore A-23187 and inhibited by the intermediate-conductance IKCa channel blocker clotrimazole. ICl was activated by hyposmotic (0.8 T) conditions and inhibited by the chloride channel blockers DIDS and NPPB. The corresponding ion channel genes and proteins, KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl, were confirmed by RT-PCR and Western immunoblotting analysis in mouse MSCs. These results demonstrate that three types of functional ion channel currents (i.e., IKir, IKCa, and ICl) are present in mouse bone marrow MSCs. inward rectifier potassium current; intermediate-conductance calcium-activated potassium current; volume-sensitive chloride current  相似文献   

10.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

11.
Mice are useful animal models to study pathogenic mechanisms involved in pulmonary vascular disease. Altered expression and function of voltage-gated K+ (KV) channels in pulmonary artery smooth muscle cells (PASMCs) have been implicated in the development of pulmonary arterial hypertension. KV currents (IK(V)) in mouse PASMCs have not been comprehensively characterized. The main focus of this study was to determine the biophysical and pharmacological properties of IK(V) in freshly dissociated mouse PASMCs with the patch-clamp technique. Three distinct whole cell IK(V) were identified based on the kinetics of activation and inactivation: rapidly activating and noninactivating currents (in 58% of the cells tested), rapidly activating and slowly inactivating currents (23%), and slowly activating and noninactivating currents (17%). Of the cells that demonstrated the rapidly activating noninactivating current, 69% showed IK(V) inhibition with 4-aminopyridine (4-AP), while 31% were unaffected. Whole cell IK(V) were very sensitive to tetraethylammonium (TEA), as 1 mM TEA decreased the current amplitude by 32% while it took 10 mM 4-AP to decrease IK(V) by a similar amount (37%). Contribution of Ca2+-activated K+ (KCa) channels to whole cell IK(V) was minimal, as neither pharmacological inhibition with charybdotoxin or iberiotoxin nor perfusion with Ca2+-free solution had an effect on the whole cell IK(V). Steady-state activation and inactivation curves revealed a window K+ current between –40 and –10 mV with a peak at –31.5 mV. Single-channel recordings revealed large-, intermediate-, and small-amplitude currents, with an averaged slope conductance of 119.4 ± 2.7, 79.8 ± 2.8, 46.0 ± 2.2, and 23.6 ± 0.6 pS, respectively. These studies provide detailed electrophysiological and pharmacological profiles of the native KV currents in mouse PASMCs. KV channels  相似文献   

12.
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. An imbalance in the ratio of inward and outward conducting channels is unfavorable and often detrimental. For example, over- or underexpression of voltage-gated K+ (Kv) channels can be cytotoxic and in some cases lead to disease. In this study, we demonstrated a novel role for S-acylation in Kv1.5 cell surface expression. In transfected fibroblasts, biochemical evidence showed that Kv1.5 is posttranslationally modified on both the NH2 and COOH termini via hydroxylamine-sensitive thioester bonds. Pharmacological inhibition of S-acylation, but not myristoylation, significantly decreased Kv1.5 expression and resulted in accumulation of channel protein in intracellular compartments and targeting for degradation. Channel protein degradation was rescued by treatment with proteasome inhibitors. Time course experiments revealed that S-acylation occurred in the biosynthetic pathway of nascent channel protein and showed that newly synthesized Kv1.5 protein, but not protein expressed on the cell surface, is sensitive to inhibitors of thioacylation. Sensitivity to inhibitors of S-acylation was governed by COOH-terminal, but not NH2-terminal, cysteines. Surprisingly, although intracellular cysteines were required for S-acylation, mutation of these residues resulted in an increase in Kv1.5 cell surface channel expression, suggesting that screening of free cysteines by fatty acylation is an important regulatory step in the quality control pathway. Together, these results show that S-acylation can regulate steady-state expression of Kv1.5. quality control; potassium; channels; palmitoylation; posttranslational  相似文献   

13.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

14.
In the brain,astrocytes represent a major target for endothelins (ETs), a family ofpeptides that can be released by several cell types and that havepotent and multiple effects on astrocytic functions. Four types ofK+ currents (IK) were detected invarious proportions by patch-clamp recordings of cultured striatalastrocytes, including the A-type IK, theinwardly rectifying IK IR, theCa2+-dependent IK(IK Ca), and the delayed-rectifiedIK (IK DR). Variationsin the shape of current-voltage relationships were related mainly todifferences in the proportion of these currents. ET-1 was found toregulate with opposite effects the two more frequently recorded outwardK+ currents in striatal astrocytes. Indeed, this peptideinduced an initial activation of IK Ca(composed of SK and BK channels) and a delayed long-lasting inhibitionof IK DR. In current-clamp recordings, theactivation of IK Ca correlated with a transient hyperpolarization, whereas the inhibition ofIK DR correlated with a sustaineddepolarization. These ET-1-induced sequential changes inmembrane potential in astrocytes may be important for the regulation ofvoltage gradients in astrocytic networks and the maintenance ofK+ homeostasis in the brain microenvironment.

  相似文献   

15.
Resting membrane potential (RMP) and whole cell currents wererecorded in human THP-1 monocytes adherent to polystyrene, unstimulated human umbilical vein endothelial cells (HUVECs),lipopolysaccharide (LPS)-treated HUVECs, immobilizedE-selectin, or vascular cell adhesion molecule 1 (VCAM-1)using the patch-clamp technique. RMP after 5 h on polystyrene was24.3 ± 1.7 mV (n = 42) with delayed rectifier K+(Idr) andCl currents(ICl) presentin >75% of the cells. Inwardly rectifying K+ currents(Iir) werepresent in only 14% of THP-1 cells. Adherence to unstimulated HUVECsor E-selectin for 5 h had no effect on Iir orICl but decreasedIdr. Five hoursafter adherence to LPS-treated HUVECs, outward currents were unchanged,but Iir waspresent in 81% of THP-1 cells. A twofold increase inIir and ahyperpolarization (41.3 ± 3.7 mV,n = 16) were abolished by pretreatmentof THP-1 cells with cycloheximide, a protein synthesis inhibitor, orherbimycin A, a tyrosine kinase inhibitor, or by pretreatment of theLPS-treated HUVECs with anti-VCAM-1. Only a brief (15-min) interactionbetween THP-1 cells and LPS-treated HUVECs was required toinduce Iir expression 5 h later. THP-1 cells adherent to VCAM-1 exhibited similarconductances to cells adherent to LPS-treated HUVECs. Thus engagementof specific integrins results in selective modulation of differentK+ conductances.

  相似文献   

16.
CLH-3a and CLH-3b are swelling-activated, alternatively spliced Caenorhabditis elegans ClC anion channels that have identical membrane domains but exhibit marked differences in their cytoplasmic NH2 and COOH termini. The major differences include a 71-amino acid CLH-3a NH2-terminal extension and a 270-amino acid extension of the CLH-3b COOH terminus. Splice variation gives rise to channels with striking differences in voltage, pH, and Cl sensitivity. On the basis of structural and functional insights gained from crystal structures of bacterial ClCs, we suggested previously that these functional differences are due to alternative splicing of the COOH terminus that may change the accessibility and/or function of pore-associated ion-binding sites. We recently identified a mutant worm strain harboring a COOH-terminal deletion mutation in the clh-3 gene. This mutation removes 101 COOH-terminal amino acids unique to CLH-3b and an additional 64 upstream amino acids shared by both channels. CLH-3b is expressed in the worm oocyte, which allowed us to characterize the mutant channel, CLH-3bC, in its native cellular environment. CLH-3bC exhibits altered voltage-dependent gating as well as pH and Cl sensitivity that resemble those of CLH-3a. This mutation also alters channel inhibition by Zn2+, prevents ATP depletion-induced activation, and dramatically reduces volume sensitivity. These results suggest that the deleted COOH-terminal region of CLH-3bC functions to modulate channel sensitivity to voltage and extracellular ions. This region also likely plays a role in channel regulation and cell volume sensitivity. Our findings contribute to a growing body of evidence indicating that cytoplasmic domains play key roles in the gating and regulation of eukaryotic ClCs. chloride; cell volume; voltage-gated anion channel  相似文献   

17.
The effect of oxidants on voltage-dependent K+ currents was examined in mouse colonic smooth muscle cells. Exposure to either chloramine-T (Ch-T), an agent known to oxidize both cysteine and methionine residues, or the colon-specific oxidant monochloramine (NH2Cl) completely suppressed the transient outward K+ current (Ito) while simultaneously enhancing the sustained delayed rectifier K+ current (Idr). In contrast, the cysteine-specific oxidants hydrogen peroxide (H2O2) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) exhibited partial and slow suppression of Ito by inducing a shift in channel availability of -18 mV without affecting Idr. After enhancement by NH2Cl or Ch-T, Idr was sensitive to 10 mM tetraethylammonium but not to other K+ channel blockers, suggesting that it represented activation of the resting Idr and not a separate K+ conductance. Extracellular dithiothreitol (DTT) partially reversed the effect of H2O2 and DTNB on Ito but not the actions of NH2Cl and Ch-T on either Idr or Ito. Dialysis of myocytes with GSH (5 mM) or DTT (5 mM) prevented suppression of Ito by H2O2 and DTNB but did not alter the effects of NH2Cl or Ch-T on either Idr or Ito. Ch-T and NH2Cl completely blocked Ito generated by murine Kv4.1, 4.2, and 4.3 in Xenopus oocytes, an effect not reversible by intracellular DTT. In contrast, intracellular DTT reversed the effect of H2O2 and DTNB on the cloned channels. These results suggest that Ito is suppressed via modification of both methionine and cysteine residues, whereas enhancement of Idr likely results from methionine oxidation alone. colon; colitis; redox; ion channel  相似文献   

18.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

19.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

20.
Coupling of functional GABAB receptors (GABABR) to G proteins was investigated with an expression system of baby hamster kidney (BHK) cells and Xenopus oocytes. Fluorescence resonance energy transfer (FRET) analysis of BHK cells coexpressing GABAB1a receptor (GB1aR) fused to Cerulean, a brighter variant of cyan fluorescent protein, and GABAB2 receptor (GB2R) fused to Venus, a brighter variant of yellow fluorescent protein, revealed that GB1aR-Cerulean and GB2R-Venus form a heterodimer. The GABABR agonists baclofen and 3-aminopropylphosphonic acid (3-APPA) elicited inward-rectifying K+ currents in a concentration-dependent manner in oocytes expressing GB1aR and GB2R, or GB1aR-Cerulean and GB2R-Venus, together with G protein-activated inward-rectifying K+ channels (GIRKs), but not in oocytes expressing GB1aR alone or GB2R alone together with GIRKs. Oocytes coexpressing GB1aR + Gi2-fused GB2R (GB2R-Gi2) caused faster K+ currents in response to baclofen. Furthermore, oocytes coexpressing GB1aR + GB2R fused to Gqi5 (a chimeric Gq protein that activates PLC pathways) caused PLC-mediated Ca2+-activated Cl currents in response to baclofen. In contrast, these responses to baclofen were not observed in oocytes coexpressing GB1aR-Gi2 or GB1aR-Gqi5 together with GB2R. BHK cells and Xenopus oocytes coexpressing GB1aR-Cerulean + a triplet tandem of GB2R-Venus-Gqi5 caused FRET and Ca2+-activated Cl currents, respectively, with a similar potency in BHK cells coexpressing GB1aR-Cerulean + GB2R-Venus and in oocytes coexpressing GB1aR + GB2R-Gqi5. Our results indicate that functional GABABR forms a heterodimer composed of GB1R and GB2R and that the signal transducing G proteins are directly coupled to GB2R but not to GB1R. fluorescence resonance energy transfer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号