共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) + cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS) + cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions. 相似文献
2.
The thermotropic and dynamic properties of the biologically active Delta(8)-tetrahydrocannabinol (Delta(8)-THC) and its inactive congener O-methyl-Delta(8)-tetrahydrocannabinol (Me-Delta(8)-THC) in DPPC/cholesterol (CHOL) bilayers have been studied using a combination of DSC and solid-state NMR spectroscopy. The obtained results showed differential effects of the two cannabinoids under study. These are summarized as follows: (a) the presence of the active compound fluidizes more significantly the DPPC/CHOL bilayers than the inactive analog as it is revealed by DSC and NMR spectroscopy results; (b) cholesterol seems to play a significant role in the way cannabinoids act in membrane bilayers; (c) the observed additional peaks in (13)C/MAS-NMR spectra which were cannabinoid specific offer an evidence of their different dynamic properties in membranes. In particular, the aromatic part of the inactive cannabinoid appears more mobile than that of the active one. This finding is in agreement with previously obtained X-ray data which locate the inactive cannabinoid in the hydrophobic core of the bilayer while the active one in the polar region; and (d) the observed downfield shift of C-1 carbon in the preparation containing the active cannabinoid is a strong evidence that Delta(8)-THC resides nearby the polar region where also cholesterol is well known to locate itself. Such downfield shift is absent when Me-Delta(8)-THC is resided in the membrane bilayer. These differential effects of the two cannabinoids propose that the phospholipid/cholesterol core of the membrane may play an important role in the mode of cannabinoid action by regulating their thermotropic and dynamic properties. 相似文献
3.
Chae PS Rasmussen SG Rana RR Gotfryd K Chandra R Goren MA Kruse AC Nurva S Loland CJ Pierre Y Drew D Popot JL Picot D Fox BG Guan L Gether U Byrne B Kobilka B Gellman SH 《Nature methods》2010,7(12):1003-1008
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied. 相似文献
4.
Most of the studies on the solubilization of model membranes by Triton X-100 (TR) involve one lipid. The aim of the present study was to evaluate the effect of the addition of cholesterol on the solubilization of bilayers made of palmitoyloleoylphosphatidylcholine (POPC) or dipalmitoylphosphatidylcholine (DPPC). Detailed investigation of the kinetics of solubilization of the cholesterol-containing bilayers by TR at different temperatures reveals that: (i) At 4 degrees C, solubilization of both systems is relatively slow. Hence, in order to prevent misleading conclusions from turbidity measurements it is important to monitor the solubilization after steady-state values of optical density (OD) are reached. (ii) Studies of the temperature-induced changes of the aggregates present in mixtures of TR, POPC and cholesterol indicate that the state of aggregation at all temperatures (including 4 degrees C) represents equilibrium. By contrast, for DPPC/cholesterol/TR mixtures "kinetic traps" may occur not only at 4 degrees C but at higher temperatures as well (e.g. 37 degrees C). (iii) The presence of cholesterol in POPC bilayers makes the bilayers more resistant to solubilization at low temperatures, especially at 4 degrees C. As a consequence, the temperature dependence of the TR concentration required for complete solubilization (Dt(sol)) is no longer a monotonically increasing function (as for POPC bilayers) but a bell-shaped function, with a minimum at about 25 degrees C. Inclusion of cholesterol in DPPC bilayers makes the bilayers more resistant to solubilization at all temperatures except 4 degrees C. In this system, we observe a bell-shaped dependence of Dt(sol) on temperature, with a minimum at 37 degrees C. (iv) Both the rate of vesicle size growth and the rate of the solubilization of POPC vesicles are not affected by the inclusion of cholesterol in the bilayers. Similarly, cholesterol did not affect significantly the rate of size growth of DPPC bilayers at all temperatures, but reduced the rate of solubilization at 4 degrees C. 相似文献
5.
One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaffold protein (MSP). Using microsomal membranes of baculovirus-infected Spodoptera frugiperda (Sf9) insect cells overexpressing an N-terminally anchored cytochrome P450 monoxygenase (P450), we demonstrate that target membrane proteins can be directly solubilized and incorporated into distinct populations of Nanodiscs, which can be separated by size chromatography. We show that formation of these Nanodiscs from insect cell membranes allows for the compartmentalization into soluble nanostructures that provide a natural membrane bilayer that avoids the aggregation of membrane proteins often encountered in other reconstitution procedures. Lipid composition analysis and substrate binding analysis of size-fractionated Nanodiscs arrayed in microtiter plates further demonstrates that the Nanodisc system effectively disperses the overexpressed membrane protein into monodispersed bilayers containing biochemically defined lipid components and the target protein in its native from suitable for sensitive high-throughput substrate binding analysis. 相似文献
6.
Decylamine, dodecylamine and tetradecylamine induced aggregation and fusion of acidic liposomes at concentrations of about 1 mM, 75 μM and 75 μM, respectively. Aggregation was assayed as increase in turbidity. Fusion was assayed as intermixing of membranes and contents, and was observed in the electron-microscope to form large liposomes. Only at higher concentrations did these amphiphiles induce massive leakage of the liposomes' contents. Similar effects were caused by hexadecylpyridinium bromide (CP) and hexadecyltrimethylammonium bromide (CTAB). The trivalent cation 4-dodecyldiethylenetriamine and the more hydrophobic amphiphile, trioctylmethylammonium chloride, induced fusion at concentrations of about 10–20 μM. Octylamine and heptylamine induced size increase at mM concentrations. They induced membrane intermixing but little or no content intermixing. Thus, these amphiphiles seem to promote size increase either by transfer of lipid or mainly by ‘cracking and annealing’. 相似文献
7.
Ioanna Kyrikou Thomas Mavromoustakos Hamzah Maswadeh Sophia Hatziantoniou George Nounesis 《生物化学与生物物理学报:生物膜》2004,1661(1):1-8
It has been shown that the partitioning of vinblastine in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) single and multiple bilayer dispersions induces partial interdigitation of the lipid alkyl chains. Similar behavior has been observed for abietic and ursodeoxycholic acids and may well be generalized for the partitioning of bulky amphoteric molecules, which tend to localize in the vicinity of the polar heads. For the present study, differential scanning calorimetry (DSC) has been employed to investigate the role of lipid molecular characteristics such as the alkyl chain length and the polarity of the head-group, as well as the impact of cholesterol upon vinblastine-induced interdigitation. It is found that vinblastine does not induce interdigitation in lipids with either shorter or longer alkyl chains than DPPC, or having head-groups of different polarity. In addition, it is shown that the presence of cholesterol in the lipid bilayer tends to modulate the phase behavior of the lipid/vinblastine bilayer system. Preliminary studies show that such properties directly affect the encapsulation efficiency and the pharmacokinetics of liposomes. 相似文献
8.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer. 相似文献
9.
The modulation of thermal properties of vinblastine by cholesterol in membrane bilayers 总被引:1,自引:0,他引:1
Kyrikou I Daliani I Mavromoustakos T Maswadeh H Demetzos C Hatziantoniou S Giatrellis S Nounesis G 《Biochimica et biophysica acta》2004,1661(1):1-8
It has been shown that the partitioning of vinblastine in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) single and multiple bilayer dispersions induces partial interdigitation of the lipid alkyl chains. Similar behavior has been observed for abietic and ursodeoxycholic acids and may well be generalized for the partitioning of bulky amphoteric molecules, which tend to localize in the vicinity of the polar heads. For the present study, differential scanning calorimetry (DSC) has been employed to investigate the role of lipid molecular characteristics such as the alkyl chain length and the polarity of the head-group, as well as the impact of cholesterol upon vinblastine-induced interdigitation. It is found that vinblastine does not induce interdigitation in lipids with either shorter or longer alkyl chains than DPPC, or having head-groups of different polarity. In addition, it is shown that the presence of cholesterol in the lipid bilayer tends to modulate the phase behavior of the lipid/vinblastine bilayer system. Preliminary studies show that such properties directly affect the encapsulation efficiency and the pharmacokinetics of liposomes. 相似文献
10.
The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored by spin-labeled electron spin resonance (ESR) and circular dichroism spectroscopy. For the purpose of ESR spectroscopy the major coat protein mutants V31C and G38C were site-directed spin labeled in the intact phage particle. These mutants were selected because the mutated sites are located in the hydrophobic part of the protein, and provide good reporting locations for phage integrity. All amphiphiles studied were capable of phage disruption. However, no significant phage disruption was detected below the critical micelle concentration of the amphiphile used. Based on this finding and the linear dependence of phage disruption by amphiphiles on the phage concentration, it is suggested that the solubilization of the proteins of the phage coat by amphiphiles starts with an attachment to and penetration of amphiphile molecules into the phage particle. The amphiphile concentration in the phage increases in proportion to the amphiphile concentration in the aqueous phase. Incorporation of the amphiphile in the phage particle is accompanied with a change in local mobility of the spin-labeled part of the coat protein and its secondary structure. With increasing the amphiphile concentration in the phage particle, a concentration is reached where the concentration of the amphiphile in the aqueous phase is around its critical micelle concentration. A further increase in amphiphile concentration results in massive phage disruption. Phage disruption by amphiphiles appears to be dependent on the phage coat mutations. It is concluded that phage disruption is dependent on a hydrophobic effect, since phage solubilization could significantly be increased by keeping the hydrophilic part of the amphiphile constant, while increasing its hydrophobic part. 相似文献
11.
Dov Lichtenberg 《生物化学与生物物理学报:生物膜》1985,821(3)
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the ‘equilibrium partition model’, the dependence of the ‘solubilizing detergent concentration’ on the lipid concentration intersects with the lipid axis at −1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical (‘solubilizing’) effective ratio depends upon the nature of detergent less than any of these two factors. 相似文献
12.
Experimental data that define conditions under which cholesterol crystallites form in cholesterol/phospholipid model membranes are reviewed. Structural features of the phospholipids that determine cholesterol crystallization include the length and degree of unsaturation of the acyl chains, the presence of charge on the headgroups and interheadgroup hydrogen bonds. 相似文献
13.
Characterization of the solubilization of lipid bilayers by surfactants 总被引:11,自引:0,他引:11
D Lichtenberg 《Biochimica et biophysica acta》1985,821(3):470-478
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the 'equilibrium partition model', the dependence of the 'solubilizing detergent concentration' on the lipid concentration intersects with the lipid axis at -1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical ('solubilizing') effective ratio depends upon the nature of detergent less than any of these two factors. 相似文献
14.
Experimental data that define conditions under which cholesterol crystallites form in cholesterol/phospholipid model membranes are reviewed. Structural features of the phospholipids that determine cholesterol crystallization include the length and degree of unsaturation of the acyl chains, the presence of charge on the headgroups and interheadgroup hydrogen bonds. 相似文献
15.
16.
Effect of cholesterol nucleation-promoting activity on cholesterol solubilization in model bile 总被引:1,自引:0,他引:1
Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human bile was mixed with model bile and the effect on the distribution of cholesterol and phospholipid between mixed micelles and phospholipid/cholesterol vesicles was studied by means of density gradient ultracentrifugation. The nucleation-promoting activity containing fraction induced a transfer of cholesterol and phospholipid from the micellar to the vesicular phase. This led to a decrease in the density of the vesicular fraction. We have also studied the effect of promoting activity on the nucleation time of an isolated vesicle fraction. A decrease of the nucleation time of 10.7 +/- 1.3 to 2.3 +/- 0.3 days was observed. In conclusion, a concanavalin A binding protein fraction from human bile stimulated cholesterol nucleation via a double effect; it increased the amount of vesicular cholesterol and phospholipid, and it also directly induced nucleation of cholesterol from the vesicles. 相似文献
17.
18.
19.
Mahendra Kumar Jain Michael A. Singer Fausto Ramirez J.F. Marecek N.B. He S.W. Hui 《生物化学与生物物理学报:生物膜》1984,775(3):426-434
Thermotropic phase-transition properties of the aqueous dispersions of several diacylphosphatidylcholesterol (DRCh) analogs are examined. The aqueous dispersions of their calcium salts exhibit characteristic endothermic thermotropic transitions due to a change in the conformation of acyl chains. These dispersions consist of osmotically intact liposomes that trap ions, and at the transition temperature there is anomalous increase in the ion leakage. Wide-angle electron diffraction studies of DPCh · Ca monolayers also exhibit a transition from a sharp 4.25 Å band to a broad one centering at 4.7 Å, reflecting an order-disorder transition in the acyl chains. The long-range order in the organization of acyl chains of DRCh molecules could arise from intermolecular interactions between the cholesterol moleties to form a functional dimer, and such dimers are apparently cross-linked by Ca2+ to form a long-range interacting lattice of acyl chains. Evidence for this model is adduced from the fluorescence properties of the dispersions of dimyristoylphosphatidylcholesta-5,7,9-trienol. The phase-transition properties of DRCh are an ideal illustration of calcium-induced isothermal phase transition. 相似文献
20.
Bilayers consisting, in their hydrophobic core, entirely of cholesterol can be constructed if a hydrophilic molecular anchor is supplied. and cholesterol sulfate form multilayered liposomes in water. With equimolar cholesterol added, cholesterol sulfate, cholesterolphosphocholine, and form small unilamellar liposomes on prolonged sonication. The dimensions of cholesterol-cholesterolphosphocholine vesicles are comparable to those of phospholipid vesicles. 13C-NMR spectra suggest that the centers of the bilayers are liquid. The permeability of the cholesterol-cholesterolphosphocholine bilayer against glycerol is lower than that of dipalmitoylphosphatidylcholine-cholesterol bilayer; the activation energy of permeation is two times larger, an indication of a higher degree of structural organization in the ‘hydrogen belts’ of the cholesterol-cholesterolphosphocholine bilayer. 相似文献