首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of the cDNA for human prostaglandin H synthase   总被引:5,自引:0,他引:5  
Prostaglandin H Synthase (PGHS, cyclooxygenase) is a 67 kd protein which catalyzes the first step in prostaglandin synthesis. The primary amino acid sequence and the molecular mechanisms regulating expression are unknown. We report here isolation of a cDNA clone for the enzyme from human vascular endothelial cells for use in such studies. High titre, polyclonal antiserum against PGHS was developed in rabbits. The antiserum was monospecific, reacted with cyclooxygenase on Western blots at a limiting dilution of 1:500,000 and immunoprecipitated cyclooxygenase synthesized by in vitro translation of PGHS messenger RNA. It was used to screen a lambda gt11 cDNA expression library from human endothelial cells. Three positive clones were isolated. Following plaque purification, one clone reacted strongly with two other polyclonal antisera independently raised against highly purified cyclooxygenase and the aspirin-acetylated enzyme. Western blot analysis confirmed production of a large approximately 180 kd fusion protein of cyclooxygenase and beta-galactosidase. The cDNA insert of approximately 2.2 kilo base pairs was excised and subcloned into plasmid pUC8. A 24 nucleotide DNA probe, synthesized according to the amino acid sequence of the aspirin-acetylation site of cyclooxygenase, hybridized strongly with the 2.2 kbp cDNA insert. It is concluded that the 2.2 kbp cDNA insert represents a cDNA clone for human cyclooxygenase, which also expresses the aspirin-acetylation site. This is the first reported isolation of the cDNA for this enzyme, and will facilitate further studies on the primary sequence and on the regulation of the enzyme at the molecular level.  相似文献   

2.
In order to survive in an oxygen environment, aerobic organisms have developed numerous mechanisms to protect against oxygen radicals and singlet oxygen. One such mechanism, which appears to have attained particular significance during primate evolution, is the direct scavenging of oxygen radicals, singlet oxygen, oxo-haem oxidants and hydroperoxyl radicals by uric acid. In the present paper we demonstrate that another important 'antioxidant' property of uric acid is the ability to form stable co-ordination complexes with iron ions. Formation of urate-Fe3+ complexes dramatically inhibits Fe3+-catalysed ascorbate oxidation, as well as lipid peroxidation in liposomes and rat liver microsomal fraction. In contrast with antioxidant scavenger reactions, the inhibition of ascorbate oxidation and lipid peroxidation provided by urate's ability to bind iron ions does not involve urate oxidation. Association constants (Ka) for urate-iron ion complexes were determined by fluorescence-quenching techniques. The Ka for a 1:1 urate-Fe3+ complex was found to be 2.4 X 10(5), whereas the Ka for a 1:1 urate-Fe2+ complex was determined to be 1.9 X 10(4). Our experiments also revealed that urate can form a 2:1 complex with Fe3+ with an association constant for the second urate molecule (K'a) of approx. 4.5 X 10(5). From these data we estimate an overall stability constant (Ks approximately equal to Ka X K'a) for urate-Fe3+ complexes of approx. 1.1 X 10(11). Polarographic measurements revealed that (upon binding) urate decreases the reduction potential for the Fe2+/Fe3+ half-reaction from -0.77 V to -0.67 V. Thus urate slightly diminishes the oxidizing potential of Fe3+. The present results provide a mechanistic explanation for our previous report that urate protects ascorbate from oxidation in human blood. The almost saturating concentration of urate normally found in human plasma (up to 0.6 mM) represents 5-10 times the plasma ascorbate concentration, and is orders of magnitude higher than the 'free' iron ion concentration. These considerations point to the physiological significance of our findings.  相似文献   

3.
Lithospermic acid (LSA) was originally isolated from the roots of Salvia mitiorrhiza, a common herb of oriental medicine. Previous studies demonstrated that LSA has antioxidant effects. In this study, we investigated the in vitro xanthine oxidase (XO) inhibitory activity, and in vivo hypouricemic and anti-inflammatory effects of rats. XO activity was detected by measuring the formation of uric acid or superoxide radicals in the xanthine/xanthine oxidase system. The results showed that LSA inhibited the formation of uric acid and superoxide radicals significantly with an IC50 5.2 and 1.08 microg/ml, respectively, and exhibited competitive inhibition. It was also found that LSA scavenged superoxide radicals directly in the system beta-NADH/PMS and inhibited the production of superoxide in human neutrophils stimulated by PMA and fMLP. LSA was also found to have hypouricemic activity on oxonate-pretreated rats in vivo and have anti-inflammatory effects in a model of gouty arthritis. These results suggested that LSA is a competitive inhibitor of XO, able to directly scavenge superoxide and inhibit superoxide production in vitro, and presents hypouricemic and anti-inflammatory actions in vivo.  相似文献   

4.
Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.  相似文献   

5.
Apples are a major source of flavonoids in the Western diet, and flavonoid-rich foods may help protect against chronic diseases by antioxidant mechanisms. In the present study we investigated: (1) the antioxidant capacity of representative apple polyphenols and their contribution to the total antioxidant capacity of apple extracts; (2) the effects of adding apple extract to human plasma in vitro on oxidation of endogenous antioxidants and lipids; and (3) the effects of apple consumption by humans on ex vivo oxidation of plasma antioxidants and lipids. We found that the apple-contained flavonols and flavanols, quercetin, rutin, (-)-epicatechin, and (+)-catechin, had a higher antioxidant capacity than the dihydrochalcones, phloridzin and phloretin, and the hydroxycinnamate, chlorogenic acid. However, together these apple polyphenols contributed less than 20% to the total antioxidant capacity of aqueous apple extracts. When human plasma was exposed to a constant flux of aqueous peroxyl radicals, endogenous ascorbate (70.0 +/- 10.3 microM) was oxidized within 45 min of incubation, while endogenous urate (375 +/- 40 microM) and alpha-tocopherol (24.7 +/- 1.2 microM) were oxidized after ascorbate. Addition of 7.1 or 14.3 micrograms/ml total phenols of apple extract did not protect ascorbate from oxidation, but increased the half-life (t1/2) of urate from 136 +/- 15 to 192 +/- 16 and 208 +/- 23 min, respectively (p < 0.05 each), and t1/2 of alpha-tocopherol from 141 +/- 18 to 164 +/- 8 min (p = ns) and 188 +/- 8 min (p < 0.05). Lipid peroxidation started after ascorbate depletion, and addition of apple extract increased the lag time preceding detectable lipid peroxidation from 36.3 +/- 3.7 to 50.9 +/- 2.7 min (p < 0.05) and 70.4 +/- 4.2 min (p < 0.001). However, when six healthy volunteers ate five apples and plasma was obtained up to 4 h after apple consumption, no significant increases in the resistance to oxidation of endogenous urate, alpha-tocopherol, and lipids were found. Thus, despite the high antioxidant capacity of individual apple polyphenols and apple extracts and the significant antioxidant effects of apple extract added to human plasma in vitro, ingestion of large amounts of apples by humans does not appear to result in equivalent in vivo antioxidant effects of apple polyphenols.  相似文献   

6.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

7.
Urate is an efficient antioxidant and has recently emerged as a competitive inhibitor of tyrosine nitration by peroxynitrite. In vivo and in vitro studies demonstrate the large extent to which urate prevents nitration and establish the biological importance of the reaction between urate and peroxynitrite. The existing lack of characterization of this reaction has led us to focus our studies upon the mechanism of urate oxidation and the products formed. An oxidation product has been previously isolated and mass spectrometry revealed a mass of 146, which spontaneously fragmented into several other ion peaks without use of MS/MS mode. Here, we propose the novel oxidation product to be triuret (H(2)NCONHCONHCONH(2)). Triuret accurately reproduced the peculiar mass spectrum. Identification of the oxidation product helps to develop the mechanism of peroxynitrite-mediated oxidation of urate and can help explain urate's potential as both an antioxidant for tyrosine nitration while paradoxically acting as a pro-oxidant for lipids and sulfhydryls.  相似文献   

8.
Abuja PM 《FEBS letters》1999,446(2-3):305-308
Uric acid and ascorbic acid are important low molecular weight antioxidants in plasma. Their interactions and combined effect on Cu(2+)-catalysed oxidation of human low density lipoprotein were studied in vitro. It was found that uric acid alone becomes strongly prooxidant whenever it is added to low density lipoprotein shortly after the start of oxidation (conditional prooxidant). Ascorbic acid, which is present in human plasma at much lower concentrations (20-60 microM) than urate (300-400 microM), is in itself not a conditional prooxidant. Moreover, ascorbate prevents prooxidant effects of urate, when added to oxidising low density lipoprotein simultaneously with urate, even at a 60-fold molar excess of urate over ascorbate. Ascorbate appears to have the same anti-prooxidant effect with other aqueous reductants, which, besides their antioxidant properties, were reported to be conditionally prooxidant. Such interactions between ascorbate and urate may be important in preventing oxidative modification of lipoproteins in the circulation and in other biological fluids.  相似文献   

9.
We recently reported that, depending on its concentration, urate is either a pro- or an antioxidant in Cu(2+)-induced low-density lipoprotein (LDL) oxidation. We also previously demonstrated an antioxidant synergy between urate and some flavonoids in the Cu(2+)-induced oxidation of diluted serum. As a result, the effect of the flavonoid quercetin on the Cu(2+)-induced oxidation of isolated LDL has been studied either in the presence or absence of urate. We demonstrate that, like urate, quercetin alone, at low concentration, exhibits a pro-oxidant activity. The pro-oxidant behavior depends on the Cu(2+) concentration but it is not observed at high Cu(2+) concentration. When compared with urate, the switch between the pro- and the antioxidant activities occurs at much lower quercetin concentrations. As for urate, the pro-oxidant character of quercetin is related to its ability to reduce Cu(2+) with the formation of semioxidized quercetin and Cu(+) with an expected yield larger than that obtained with urate owing to a more favorable redox potential. It is also shown that the pro-oxidant activity of urate can be inhibited by quercetin. An electron transfer between quercetin and semioxidized urate leading to the repair of urate could account for this observation as suggested by recently published pulse radiolysis data. It is anticipated that the interactions between quercetin-Cu(2+)-LDL and urate, which are tightly controlled by their respective concentration, determine the balance between the pro- and antioxidant behaviors. Moreover, as already observed with other antioxidants, it is demonstrated that quercetin alone behaves as a pro-oxidant towards preoxidized LDL.  相似文献   

10.
Free radical metabolite of uric acid   总被引:2,自引:0,他引:2  
Uric acid has previously been shown to act as a water-soluble antioxidant. Although the antioxidant activity of uric acid has been attributed to its ability to scavenge free radicals, the one-electron uric acid oxidation product of such a scavenging reaction has not been detected. It order to determine whether a free radical metabolite of uric acid could be formed via one-electron redox processes, we oxidized uric acid with potassium permanganate, horseradish peroxidase/hydrogen peroxide, and hematin/hydrogen peroxide systems. With the use of the rapid-mixing, continuous-flow electron spin resonance technique, we were able to detect the urate anion free radical in all three radical-generating systems. Based on N15-isotopic-labeling experiments, we show that the unpaired electron of this radical is located primarily on the five-membered ring of the purine structure. We were also able to demonstrate that this radical could be scavenged by ascorbic acid.  相似文献   

11.
Nitric oxide is a potent inhibitor of membrane lipid peroxidation. It is unknown, however, whether nitric oxide synthase (NOS) activity increases under conditions of membrane lipid peroxidation. Importantly, cyclooxygenase (COX)-catalyzed peroxidation of arachidonic acid is well-established to be increased by lipid hydroperoxides. The results of the present study demonstrate that the COX hydroperoxide product prostaglandin G(2) (PGG(2)) greatly stimulated NOS activity in synaptosomal membrane fractions from rat brain in a dose-dependent (EC(50) = 0.2 microM) manner in the presence of ATP and the antioxidant urate. NOS activation was also produced, albeit to a lesser extent, by 15-hydroperoxyeicosatetraenoic acid (15-HPETE) but not by the corresponding hydroxy compounds PGH(2) and 15-HETE or by hydrogen peroxide. These findings demonstrate that PGG(2)-activated synaptic NOS by a hydroperoxide-mediated pathway and support the view that NOS activation may be an important physiological response to lipid peroxidation.  相似文献   

12.
The repair of tryptophan and tyrosine radicals in proteins by urate was studied by pulse radiolysis. In chymotrypsin, urate repairs tryptophan radicals efficiently with a rate constant of 2.7 × 10(8)M(-1)s(-1), ca. 14 times higher than the rate constant derived for N-acetyltryptophan amide, 1.9 × 10(7)M(-1)s(-1). In contrast, no repair of tryptophan radicals was observed in pepsin, which indicates a rate constant smaller than 6 × 10(7)M(-1)s(-1). Urate repairs tyrosine radicals in pepsin with a rate constant of 3 × 10(8)M(-1)s(-1)-ca. 12 times smaller than the rate constant reported for free tyrosine-but not in chymotrypsin, which implies an upper limit of 1 × 10(6)M(-1)s(-1) for the corresponding rate constant. Intra- and intermolecular electron transfer from tyrosine residues to tryptophan radicals is observed in both proteins, however, to different extents and with different rate constants. Urate inhibits electron transfer in chymotrypsin but not in pepsin. Our results suggest that urate repairs the first step on the long path to protein modification and prevents damage in vivo. It may prove to be a very important repair agent in tissue compartments where its concentration is higher than that of ascorbate. The product of such repair, the urate radical, can be reduced by ascorbate. Loss of ascorbate is then expected to be the net result, whereas urate is conserved.  相似文献   

13.
Blood flow interruption is associated with oxygen depletion and loss of factors for function and survival in downstream tissues or cells. Hypoxia and absence of gonadotropins trigger apoptosis and atresia in the ovary. We studied the antioxidant response of follicular cells to plasma deprivation in ovaries dissected from water buffalo. Aliquots of follicular fluid were aspirated from each antral follicle, before and during incubation of the ovaries at 39°C. Urate, ascorbate, retinol and α-tocopherol in the fluid were, titrated by High Performance Liquid Chromatography (HPLC) with spectrophotometric or spectrofluorimetric detection. The total antioxidant capacity of follicular fluid was determined as absorbance decrease, following addition of a source of radical chromophores. The more the incubation progressed, the higher levels of urate, ascorbate and total antioxidant capacity were found. Conversely, changes in concentration of the liposoluble antioxidants were not observed. Ascorbate synthesizing activity in the follicle was demonstrated by detecting the enzyme L-gulono-γ-lactone oxidase in microsomes prepared from granulosa cells. These cells were also analyzed for the expression of the enzyme CPP32. The enzyme level, measured as DEVD-p-nitroanilide cleaving activity, was found related with the immunoreactivity to anti-CPP32 antibodies. Negative correlation between the enzyme activity (which is known to be induced by peroxynitrite) and the follicular level of urate (which scavenges peroxynitrite) was also observed. The amount of nitrotyrosine, a product of peroxynitrite attack on proteins, was measured in follicular fluids by Enzyme Linked ImmunoSorbent Assay (ELISA). This amount was found positively correlated with the CPP32 activity, and negatively correlated with the urate level in follicular fluid. Alterations in concentrations of ascorbate or urate may be associated with oxidative stress during follicular atresia.  相似文献   

14.
Blood flow interruption is associated with oxygen depletion and loss of factors for function and survival in downstream tissues or cells. Hypoxia and absence of gonadotropins trigger apoptosis and atresia in the ovary. We studied the antioxidant response of follicular cells to plasma deprivation in ovaries dissected from water buffalo. Aliquots of follicular fluid were aspirated from each antral follicle, before and during incubation of the ovaries at 39 degrees C. Urate, ascorbate, retinol and alpha-tocopherol in the fluid were, titrated by High Performance Liquid Chromatography (HPLC) with spectrophotometric or spectrofluorimetric detection. The total antioxidant capacity of follicular fluid was determined as absorbance decrease, following addition of a source of radical chromophores. The more the incubation progressed, the higher levels of urate, ascorbate and total antioxidant capacity were found. Conversely, changes in concentration of the liposoluble antioxidants were not observed. Ascorbate synthesizing activity in the follicle was demonstrated by detecting the enzyme L-gulono-gamma-lactone oxidase in microsomes prepared from granulosa cells. These cells were also analyzed for the expression of the enzyme CPP32. The enzyme level, measured as DEVD-p-nitroanilide cleaving activity, was found related with the immunoreactivity to anti-CPP32 antibodies. Negative correlation between the enzyme activity (which is known to be induced by peroxynitrite) and the follicular level of urate (which scavenges peroxynitrite) was also observed. The amount of nitrotyrosine, a product of peroxynitrite attack on proteins, was measured in follicular fluids by Enzyme Linked ImmunoSorbent Assay (ELISA). This amount was found positively correlated with the CPP32 activity, and negatively correlated with the urate level in follicular fluid. Alterations in concentrations of ascorbate or urate may be associated with oxidative stress during follicular atresia.  相似文献   

15.
Cyclooxygenase catalysis by prostaglandin H synthase-1 and -2 (PGHS-1 and -2) requires activation of the normally latent enzyme by peroxide-dependent generation of a free radical at Tyr-385 (PGHS-1 numbering) in the cyclooxygenase active site; the Tyr-385 radical has also been linked to self-inactivation processes that impose an ultimate limit on cyclooxygenase catalysis. Cyclooxygenase activation is more resistant to suppression by cytosolic glutathione peroxidase in PGHS-2 than in PGHS-1. This differential response to peroxide scavenging enzymes provides a basis for the differential catalytic regulation of the two PGHS isoforms observed in vivo. We sought to identify structural differences between the isoforms, which could account for the differential cyclooxygenase activation, and used site-directed mutagenesis of recombinant human PGHS-2 to focus on one heme-vicinity residue that diverges between the two isoforms, Thr-383, and an adjacent residue that is conserved between the isoforms, Asn-382. Substitutions of Thr-383 (histidine in most PGHS-1) with histidine or aspartate decreased cyclooxygenase activation efficiency by about 40%, with little effect on cyclooxygenase specific activity or self-inactivation. Substitutions of Asn-382 with alanine, aspartate, or leucine had little effect on the cyclooxygenase specific activity or activation efficiency but almost doubled the cyclooxygenase catalytic output before self-inactivation. Asn-382 and Thr-383 mutations did not appreciably alter the Km value for arachidonate, the cyclooxygenase product profile, or the Tyr-385 radical spectroscopic characteristics, confirming the structural integrity of the cyclooxygenase site. The side chain structures of Asn-382 and Thr-383 in PGHS-2 thus selectively influence two important aspects of cyclooxygenase catalytic regulation: activation by peroxide and self-inactivation.  相似文献   

16.
The potent antioxidant properties of rosemary (Rosmarinus officinalis) extracts have been attributed to its major diterpene, carnosic acid. Carnosic acid has received considerable attention in food science and biomedicine, but little is known about its function in the plant in vivo. We recently found that highly oxidized diterpenes increase in rosemary plants exposed to drought and high light stress as a result of the antioxidant activity of carnosic acid (S. Munné-Bosch, K. Schwarz, L. Alegre [1999] Plant Physiol 121: 1047-1052). To elucidate the significance of the antioxidant function of carnosic acid in vivo we measured the relative amounts of carnosic acid and its metabolites in different compartments of rosemary leaves. Subcellular localization studies show that carnosic acid protects chloroplasts from oxidative stress in vivo by following a highly regulated compartmentation of oxidation products. Carnosic acid scavenges free radicals within the chloroplasts, giving rise to diterpene alcohols, mainly isorosmanol. This oxidation product is O-methylated within the chloroplasts, and the resulting form, 11,12-di-O-methylisorosmanol, is transferred to the plasma membrane. This appears to represent a mechanism of a way out for free radicals from chloroplasts. Carnosic acid also undergoes direct O-methylation within the chloroplasts, and its derived product, 12-O-methylcarnosic acid, accumulates in the plasma membrane. O-methylated diterpenes do not display antioxidant activity, but they may influence the stability of the plasma membrane. This study shows the relevance of the compartmentation of carnosic acid metabolism to the protection of rosemary plants from oxidative stress in vivo.  相似文献   

17.
Two categories of cysteinyl-leukotrienes have been proposed, namely, CysLT1 and CysLT2. These receptors are found not only on the vascular smooth muscle but also on the endothelium. Activation of the receptor(s) on vascular smooth muscle provokes contraction whereas activation of the receptors on the endothelium produces contraction and/or relaxation. These endothelium dependent effects are due to the release of both contractile and relaxant factors derived from the endothelium. While factors derived from either the cyclooxygenase or nitric oxide pathways are involved, in some vascular preparations other mediators such as endothelin may be involved. However, in isolated human pulmonary vascular preparations, this appears not to be the case and presently the nature and origin of the contractile factor remains to be established.  相似文献   

18.
Arachidonic acid metabolism in isolated glomeruli from pig kidney was investigated. Arachidonic acid metabolism via cyclooxygenase was studied by three different methodological approaches: radioimmunoassay (RIA), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). By all these techniques, the major prostaglandins (PG) formed by pig glomeruli appeared to be 6-keto-PGF1 alpha and PGF2 alpha, the former being the most abundant. RIA and GC-MS also detected lower amounts of thromboxane B2 (TxB2) and PGE2. This emphasises the similarity with human glomeruli, in which the main cyclooxygenase product has indeed been reported to be 6-keto-PGF1 alpha. The lipoxygenase activity in isolated pig glomeruli, as studied by HPLC, generated 15-HETE, 12-HETE and 5-HETE. These data demonstrate that isolated glomeruli from pig kidney possess cyclooxygenase as well as lipoxygenase activity. Since a marked functional similarity exists between human and pig kidney, the pig can be regarded as a good model for studying the influence of arachidonic acid metabolites on glomerular pathophysiology.  相似文献   

19.
Uric acid has been considered to be an efficient scavenger of peroxynitrite but the reaction between urate and peroxynitrite has been only partially characterized. Also, previous studies have indicated that urate may increase peroxynitrite-mediated oxidation of low density lipoprotein (LDL). Here, we examined the reaction between urate and peroxynitrite by combining kinetic, oxygen consumption, spin trapping, and product identification studies; in parallel, we tested the effect of urate upon peroxynitrite-mediated lipid oxidation. Our results demonstrated that urate reacts with peroxynitrite with an apparent second order rate constant of 4.8 x 10(2) M(-1). s(-1) in a complex process, which is accompanied by oxygen consumption and formation of allantoin, alloxan, and urate-derived radicals. The main radical was identified as the aminocarbonyl radical by the electrospray mass spectra of its 5, 5-dimethyl-l-pyrroline N-oxide adduct. Mechanistic studies suggested that urate reacts with peroxynitrous acid and with the radicals generated from its decomposition to form products that can further react with peroxynitrite anion. These many reactions may explain the reported efficiency of urate in inhibiting some peroxynitrite-mediated processes. Production of the aminocarbonyl radical, however, may propagate oxidative reactions. We demonstrated that this radical is likely to be the species responsible for the effects of urate in amplifying peroxynitrite-mediated oxidation of liposomes and LDL, which was monitored by the formation of lipid peroxides and thiobarbituric acid-reactive substances. The aminocarbonyl radical was not detectable during urate attack by other oxidants and consequently it is unlikely to be responsible for all previously described prooxidant effects of uric acid.  相似文献   

20.
Xanthine oxidase and endothelium dependent relaxation   总被引:1,自引:0,他引:1  
Superoxide anion (O2-) generated from xanthine oxidase/xanthine has been used to decrease the half life of endothelium derived relaxing factor (EDRF). However, by itself, xanthine oxidase causes endothelium dependent relaxation. This relaxation is unrelated to the oxidative property of the enzyme since it is not inhibited by allopurinol. In addition, the relaxation is not inhibited by the cyclooxygenase inhibitor, indomethacin, or the phospholipase A2 inhibitor, p-bromophenacyl bromide. On the other hand the relaxation is inhibited by the trypsin inhibitor (TI) from chicken egg white. A similar endothelium dependent relaxation elicited by pancreatin and trypsin is also inhibited by TI. Pancreatin used in the preparation of xanthine oxidase contains trypsin, chymotrypsin and carboxypeptidase. When compared to trypsin both chymotrypsin and carboxypeptidase elicit little relaxation. Thus the endothelium dependent relaxation elicited by xanthine oxidase is likely due to contamination with trypsin. Our results emphasize that when the superoxide generating system, xanthine oxidase/xanthine is used to study the effect of oxygen radicals on EDRF, it is advantageous to ensure that only purified preparations of xanthine oxidase are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号