首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Improper forest harvesting can potentially degrade forest ecosystem functions and services. Human-assisted regeneration (e.g., planting) is often used to increase the rate of forest recovery and thereby reduce regeneration failure. Seed dispersal is a fundamental ecological process that can also influence spatio-temporal patterns of forest regeneration. In this study, we investigated the relative contribution of planting and seed dispersal on forest regeneration at landscape scales. Because such influences can be further complicated by timber harvest intensity and seed availability within and around harvested area, we also evaluated the effects of those factors on forest landscape dynamics. We used the forest landscape model LANDIS to simulate the dynamics of Korean pine-broadleaf mixed forests in Northeast China. We considered three factors: timber harvest intensity (3 levels), seed dispersal and whether or not planting was used. The results showed that planting was more important in maintaining the abundance of Korean pine (Pinus koraiensis), a climax keystone species in this region, under the high-intensity harvesting option during early succession. In contrast, seed dispersal was more important during late succession. Korean pine can be successfully regenerated through seed dispersal under low and medium harvest intensities. Our results also indicated that effective natural regeneration will require protecting seed-production trees (seed rain). This study results provide a basis for more effectively managing Chinese temperate forests and possibly other similar ecosystems.  相似文献   

2.
Stephen Elliott 《Biotropica》2016,48(6):825-833
Assisted (or accelerated) natural regeneration (ANR) will play an important role in meeting the UN target to restore forest to 350 million hectares of degraded land, by 2030. However, since most accessible land is already used for agriculture, most of the sites, available for ANR, are far from roads and/or on difficult terrain, where implementing ANR with human labour is not practical. Therefore, this paper explores the potential of emerging technologies, such as low‐cost UAVs (drones) and new imaging devices, to automate ANR tasks, including site monitoring (to assess site potential for natural regeneration, plan interventions and assess progress), maintenance of natural regeneration (particularly weeding) and species enrichment through aerial seeding. The usefulness of existing technologies is reviewed and future innovations needed, to provide practicable support for ANR, are discussed. Intensive collaboration, among technologists and forest ecologists, will be essential to ensure that technological innovations are based firmly on sound restoration science.  相似文献   

3.
Principles of Natural Regeneration of Tropical Dry Forests for Restoration   总被引:13,自引:1,他引:12  
Tropical dry forests are the most threatened tropical terrestrial ecosystem. However, few studies have been conducted on the natural regeneration necessary to restore these forests. We reviewed the ecology of regeneration of tropical dry forests as a tool to restore disturbed lands. Dry forests are characterized by a relatively high number of tree species with small, dry, wind‐dispersed seeds. Over small scales, wind‐dispersed seeds are better able to colonize degraded areas than vertebrate‐dispersed plants. Small seeds and those with low water content are less susceptible to desiccation, which is a major barrier for establishment in open areas. Seeds are available in the soil in the early rainy season to maximize the time to grow. However, highly variable precipitation and frequent dry spells are important sources of mortality in seeds and seedlings. Collecting seeds at the end of the dry season and planting them when soil has sufficient moisture may increase seedling establishment and reduce the time they are exposed to seed predators. Germination and early establishment in the field are favored in shaded sites, which have milder environment and moister soil than open sites during low rainfall periods. Growth of established seedlings, however, is favored in open areas. Therefore, clipping plants around established seedlings may be a good management option to improve growth and survival. Although dry forests have species either resistant to fire or that benefit from it, frequent fires simplify community species composition. Resprouting ability is a noticeable mechanism of regeneration in dry forests and must be considered for restoration. The approach to dry‐forest restoration should be tailored to this ecosystem instead of merely following approaches developed for moister forests.  相似文献   

4.
Natural regeneration of timber species is critical to the sustainable management of tropical forests. To understand what determines regeneration success of timber species in the Congo Basin, we evaluated whether seedling recruitment rates differed between forest logged 30 years previously and unlogged forest and determined the environmental factors that influence seedling density, growth and survival. We monitored the fate of 2186 seedlings of seven timber species within 462, 25‐m2 plots located along 21 transects. We characterized seedling plots by light availability, soil nutrient availability and pH, and abundance of mammalian herbivores and then used linear and generalized linear mixed models to evaluate the variables that influenced seedling density, growth and survival. Light availability and canopy openness were 18% and 81% higher in logged than unlogged forest, and concentration of soil nutrients varied between sites. Seedling density was 32% higher in unlogged than logged forest. Taking all species together, seedling survival was positively correlated with calcium and negatively with magnesium and available phosphorus. Rates of seedling growth increased with available light. Taken separately, seedlings of the selected timber species responded differently to abiotic and biotic factors, demonstrating species‐specific regeneration requirements.  相似文献   

5.
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.  相似文献   

6.
青海三江源地区三种天然圆柏林更新特征   总被引:1,自引:0,他引:1  
为明确青海三江源地区3种天然圆柏林的更新特征及其主导影响因子,对天然林保护与经营提供参考,本研究评价了圆柏林天然更新等级,分析了林分因子和林地土壤因子对圆柏林天然更新的影响.结果 表明:3种天然圆柏林更新不良,更新潜力不足.大果圆柏林、祁连圆柏林和密枝圆柏林平均更新密度分别为332、279和202株·hm-2,更新个体...  相似文献   

7.
樟子松人工固沙林天然更新障碍因子分析   总被引:46,自引:6,他引:40  
采用比较分析与野外试验的方法,对沙地樟子松人工林天然更新障碍因子进行了分析。结果表明,影响天然更新的环境因子主要有郁闭度、枯枝落叶层、植被盖度和立地条件。天然更新的障碍主要是由于引种地降雪覆盖少,温度偏高等原因,使土壤蒸发大、苗木蒸腾大,造成水分的亏缺,从而导致1-2年生更新幼苗死亡。针对樟子松人工固沙林天然更新障碍及其更新特点,提出在适宜立地上采取人工促进措施,如埋土、灌水等方法,以保证天然更新有效进行。  相似文献   

8.
In degraded tropical pastures, active restoration strategies have the potential to facilitate forest regrowth at rates that are faster than natural recovery, enhancing litterfall, and nutrient inputs to the forest floor. We evaluated litterfall and nutrient dynamics under four treatments: plantation (entire area planted), tree islands (planting in six patches of three sizes), control (same age natural regeneration), and young secondary forest (7–9‐yr‐old natural regeneration). Treatments were established in plots of 50 × 50 m at six replicate sites in southern Costa Rica and the annual litterfall production was measured 5 yr after treatment establishment. Planted species included two native timber‐producing hardwoods (Terminalia amazonia and Vochysia guatemalensis) interplanted with two N‐fixing species (Inga edulis and Erythrina poeppigiana). Litter production was highest in secondary forests (7.3 Mg/ha/yr) and plantations (6.3), intermediate in islands (3.5), and lowest in controls (1.4). Secondary forests had higher input of all nutrients except N when compared with the plantation plots. Inga contributed 70 percent of leaffall in the plantations, demonstrating the influence that one species can have on litter quantity and quality. Although tree islands had lower litterfall rates, they were similar to plantations in inputs of Mg, K, P, Zn, and Mn. Tree islands increased litter production and nutrient inputs more quickly than natural regeneration. In addition to being less resource intensive than conventional plantations, this planting design promotes a more rapid increase in litter diversity and more spatial heterogeneity, which can accelerate the rate of nutrient cycling and facilitate forest recovery.  相似文献   

9.
The planting of non‐timber forest products (NTFPs) in the understory of tropical forests is promoted in many regions as a strategy to conserve forested lands and meet the economic needs of rural communities. While the forest canopy is left intact in most understory plantations, much of the midstory and understory vegetation is removed in order to increase light availability for cultivated species. We assessed the extent to which the removal of vegetation in understory plantations of Chamaedorea hooperiana Hodel (Arecaceae) alters understory light conditions. We also examined how any changes in light availability may be reflected by changes in the composition of canopy tree seedlings regenerating in understory plantations. We employed a blocked design consisting of four C. hooperiana plantation sites; each site was paired with an adjacent, unmanaged forest site. Hemispherical canopy photographs were taken and canopy tree seedlings were identified and measured within 12 3 × 2 m randomly placed plots in each site for a total of 96 plots (4 blocks × 2 sites × 12 plots). Plantation management did not affect canopy openness or direct light availability but understory plantations had a higher frequency of plots with greater total and diffuse light availability than unmanaged forest. Comparisons of canopy tree seedling composition between understory plantations and unmanaged forest sites were less conclusive but suggest that management practices have the potential to increase the proportion of shade‐intolerant species of tree seedlings establishing in plantations. Given the importance of advanced regeneration in gap‐phase forest dynamics, these changes may have implications for future patterns of succession in the areas of forest where NTFPs are cultivated.  相似文献   

10.
The soil seed bank is considered as an important component for resilience of climacic vegetation. Whereas several related studies have been conducted in Asian, American and some African tropical forests, no investigation has ever been conducted in Central African rainforests, especially in logged forests where the soil seed bank could contribute to regeneration of timber of trees species. We studied the soil seed bank characteristics in relation to the standing vegetation in three Cameroonian forest zones with different disturbance regimes. There was no significant difference between sites in terms of density of the seed bank; the average mean density was 87.6 seeds m−2. But dissimilarities of the floristic compositions between sites were quite high. Overall, seeds came from 43 species including three commercial tree species. Whereas the seedlings emerging from soil samples mostly came from weedy and short-lived pioneer species, climax species predominated in the extant vegetation, leading to a very weak similarity between soil seed flora and the surrounding vegetation: Sorensen's index ranged from 3.5 to 7.6%. Canopy openness could significantly affect the species richness of soil seed stocks but not the seed density. These results show that the soil seed bank contribution to the resilience of mature tropical forests is low. In particular, very few timber tree species could benefit from soil seed stocks for their regeneration. Therefore, the development of enrichment techniques including use of the soil seed bank as a source of tree regeneration in such a context would be irrelevant.  相似文献   

11.
间伐对日本黑松海岸林更新的影响   总被引:21,自引:4,他引:17  
为弄清间伐对海岸林内环境因子 ,进而对海岸林天然更新的影响 ,在黑松海岸林内进行了 4种不同强度的块状间伐试验 .林分间伐后 ,对更新状况和环境因子进行了连续观测 .结果表明 ,间伐可以改善林内光环境、提高土壤的含水量、加强空气流动、促进枯枝落叶的分解等 .4 0年生的黑松海岸林 5 0 %间伐处理后 (密度为 15 0 0株·hm-2 ,林冠开阔度 >30 % )不会对海岸林本身造成风害 ,也不会对防护功能产生较大影响 ,但却能为黑松海岸林天然更新提供良好的生态环境 .试验结果证实了间伐产生的林隙内日本黑松的更新规律 ,提出间伐可作为同龄黑松海岸林向复层、异龄海岸林演化的主要经营措施 .  相似文献   

12.
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives.  相似文献   

13.
Extensive land clearing in many parts of the global tropics is a major threat to biodiversity, and strategies are urgently needed to reinstate forest. Tree planting is a commonly used strategy to rapidly restore forest to degraded landscapes. However, tree planting is expensive, and in most cases financial constraints prevent its use at a scale needed to address the ongoing legacy of land clearing. Here, we conduct a quantitative review of literature from the global tropics and evaluate outcomes of less intensive interventions (i.e. non‐planting) aimed at stimulating natural regeneration of forest. We focus specifically on overcoming barriers to native plant regeneration that predominate in the earliest stages of succession. Common interventions include varied strategies to suppress herbaceous vegetation (e.g. cutting or herbicide treatment), and measures to bolster propagule supply (e.g. direct seeding and artificial bird perches). There was an apparent trend among pair‐wise comparisons of effect sizes to suggest that combined interventions to simultaneously suppress herbaceous vegetation and increase propagule supply resulted in the most consistent outcomes in terms of promoting progress toward restoring forest structure. Despite an obvious demand for lower cost interventions, a paucity of information means that it is still premature to generalize outcomes of specific interventions and their overall cost relative to active tree planting. Nevertheless, we report an increase in research effort in this area, and suggest promising directions to accelerate progress that will improve capacity to select optimal, cost effective strategies that achieve long‐term restoration objectives with a particular level of certainty .  相似文献   

14.
The forests of southeastern Amazonia are highly threatened by disturbances such as fragmentation, understory fires, and extreme climatic events. Large‐bodied frugivores such as the lowland tapir (Tapirus terrestris) have the potential to offset this process, supporting natural forest regeneration by dispersing a variety of seeds over long distances to disturbed forests. However, we know little about their effectiveness as seed dispersers in degraded forest landscapes. Here, we investigate the seed dispersal function of lowland tapirs in Amazonian forests subject to a range of human (fire and fragmentation) and natural (extreme droughts and windstorms) disturbances, using a combination of field observations, camera traps, and light detection and ranging (LiDAR) data. Tapirs travel and defecate more often in degraded forests, dispersing much more seeds in these areas [9,822 seeds per ha/year (CI95% = 9,106; 11,838)] than in undisturbed forests [2,950 seeds per ha/year (CI95% = 2,961; 3,771)]. By effectively dispersing seeds across disturbed forests, tapirs may contribute to natural forest regeneration—the cheapest and usually the most feasible way to achieve large‐scale restoration of tropical forests. Through the dispersal of large‐seeded species that eventually become large trees, such frugivores also contribute indirectly to maintaining forest carbon stocks. These functions may be critical in helping tropical countries to achieve their goals to maintain and restore biodiversity and its ecosystem services. Ultimately, preserving these animals along with their habitats may help in the process of natural recovery of degraded forests throughout the tropics. Abstract in Portuguese is available with online material.  相似文献   

15.
Human impacts can affect the soil properties through erosion and leaching, the ecosystem functions and, consequently, the capacity of a forest to regenerate. Here, we determine the effects of forest disturbance and succession on selected soil chemical properties using two different approaches, before‐after‐control‐impact (BACI) and space‐for‐time (SFT) substitution, and the threatened Atlantic Forest biome as model. We assessed with BACI the long‐term (37‐year) effects of clear cutting on soil properties by comparing data from two topsoil surveys (1978–2017) divided into two treatments: a preserved old growth forest (control) and an adjacent forest that was experimentally cleared with full tree removal (clear‐cut). We examined with SFT the relationship between stand age and soil properties using soil data from three old growth and 13 s growth forests ranging from 7 to 33 years. We found no significant differences between treatments for any soil property or significant changes in phosphorus, potassium, and calcium + magnesium over time. In contrast, pH increased and aluminum decreased in both areas. No relation was found between forest age and most of soil properties, with the exception of potassium which returned to old growth forest levels after 20 years of natural succession, and pH. BACI indicated that deforestation of old growth forest caused no significant effects on soil chemical properties after 37 years of regeneration. SFT demonstrated that soil properties did not change significantly during forest regeneration on formerly disturbed lands. Our findings indicate that natural nutrient‐depleted lowland forests were overall resistant to deforestation followed by passive regeneration at landscape scale. Abstract in Portuguese is available with online material.  相似文献   

16.
Little is known about the potential of restoration plantations to provide appropriate understory conditions to support the establishment of seeds arriving from neighboring native forests. In this article, we investigated how seedling establishment is affected in the understory of restoration sites of different ages and assessed some of the potential environmental factors controlling this ecological process. We first compared the density and richness of native tree seedlings among 10‐, 22‐, and 55‐year‐old restoration plantations within the Atlantic Forest region of southeastern Brazil. Then, we undertook a seed addition experiment in each study site, during the wet season, and compared seedling emergence, survival, and biomass on local versus old‐growth forest soil (transferred from a reference ecosystem), in order to test whether local substrate could hamper seedling establishment. As expected, the oldest restoration site had higher density and richness of spontaneously regenerating seedlings. However, seedling establishment was less successful both in the oldest restoration planting and using substrate transferred from a reference ecosystem, where emergence and survival were lower, but surviving seedlings grew better. We attribute these results to lower light availability for seedlings in the understory of the oldest site and speculate that higher incidence of pathogens on old‐growth forest soil may have increased seedling mortality. We conclude that the understory of young restoration plantations provides suitable microsite conditions at the early establishment phases for the spontaneous regeneration or enrichment planting of native trees.  相似文献   

17.
油樟幼苗对马尾松林窗面积的光合响应特征   总被引:2,自引:0,他引:2  
刘辉  宋会兴  杨万勤  张健 《生态学报》2015,35(12):4089-4096
为了解马尾松人工林窗对伴生树种的影响,为马尾松人工纯林的团块状混交提供科学依据,研究了10 m×10 m(T1)、15 m×15 m(T2)、20 m×20 m(T3)、25 m×25 m(T4)、30 m×30 m(T5)、35 m×35 m(T6)和40 m×40 m(T7)马尾松人工林窗中油樟(Cinnamomum longepaniculatum)幼苗叶片形态和光合生理特征的变化,探讨马尾松林窗斑块对混生树种生长的影响。结果表明:1)林窗面积低于20 m×20 m时,油樟幼苗叶片最大净光合速率显著低于旷地对照;2)叶片比叶重随着林窗面积的增大显著升高;林窗内油樟幼苗叶氮含量在小林窗中(10 m×10 m)显著低于旷地对照,但在大林窗中(如20 m×20 m)显著高于对照;林窗内幼苗叶磷含量则与旷地无显著性差异;3)叶氮在光合组分中的总分配系数随着林窗面积的增加而增大,其中叶氮在羧化组分中的分配系数升高尤为明显,而捕光组分的分配系数在林窗面积10 m×10 m—20 m×20 m范围内随林窗面积的增加而显著降低。可见,当马尾松林窗面积低于20 m×20 m时,林窗环境会显著影响油樟幼苗的光合能力,油樟幼苗可以通过调节比叶面积、叶氮含量以及叶氮在光合组分中的分配等形态、生理适应特征来适应林窗环境的变化。  相似文献   

18.
管涔山青扦(Picea wilsoni)天然林年龄结构及其动态的研究   总被引:3,自引:0,他引:3  
对种群年龄结构的研究表明,虽经人为频繁干扰,管涔山青扦天然林仍表现出异龄林结构特征,立木年龄范围超过一个龄级期,根据年龄结构特征值可分为相对同龄林、相对异龄林和异龄林3种类型。林下新一代种群的数量和结构受林冠郁闭度和结构的影响。具垂直郁闭型林冠的异龄林,林下更新数量充足,幼苗幼树年龄结构合理;而水平郁闭型林冠,不利于新一代种群的发生和发展。青扦种群年龄结构受种群发生和自疏两个过程的控制,林下种群的发生以小规模林冠空隙干扰下的连续更新为主。青扦华北落叶松混交林,在其共同适生范围内是某种干扰格局控制下的稳定群落  相似文献   

19.
Given the high rates of deforestation and subsequent land abandonment, there are increasing calls to reforest degraded lands; however, many areas are in a state of arrested succession. Plantations can break arrested succession and the sale of timber can pay for restoration efforts. However, if the harvest damages native regeneration, it may be necessary to intervene with enrichment planting. Unfortunately, it is not clear when intervention is necessary. Here, we document the rate of biomass accumulation of planted seedlings relative to natural regeneration in a harvested plantation in Kibale National Park, Uganda. We established two 2‐ha plots and in one, we planted 100 seedlings of each of four native species, and we monitored all tree regeneration in this area and the control plot. After 4 years, naturally regenerating trees were much taller, larger and more common than the planted seedlings. Species richness and two nonparametric estimators of richness were comparable between the plots. The cumulative biomass of planted seedlings accounted for 0.04% of the total above‐ground tree biomass. The use of plantations facilitated the growth of indigenous trees, and enrichment planting subsequent to harvesting was not necessary to obtain a rich tree community with a large number of new recruits.  相似文献   

20.
Hunting in tropical forests decimates large mammals, and this may have direct and indirect effects on other trophic levels and lead to trophic cascades. We compared replicated sites of hunted and protected forests in southeastern Nigeria, with respect to community composition of primates, other mammals, birds, plant seedlings, and mature trees. We make predictions regarding the community composition at the different trophic levels. In forests where large primates are rare, we hypothesize that their ecological role will not be fully compensated for by small frugivores. We apply multivariate methods to assess changes in community composition of mammals, birds, and seedlings, controlling for any differences between sites in the other groups, including mature trees. Medium and large (4–180 kg) primates were much rarer in hunted sites, while porcupine and rock hyrax increased in abundance with hunting. In contrast, the community composition of birds was similar in both types of forests. Seedling communities were significantly related to the community composition of mammals, and thus strongly affected by hunting. In protected forests primate dispersed plant seedling species dominated, whereas in hunted forests the seedling community was shifted towards one dominated by abiotically dispersed species. This was probably both a consequence of reduced seed dispersal by primates, and increased seed predation by rodents and hyrax. Hence we found no evidence for buffering effects on tree regeneration through functional compensation by non‐hunted animals (such as birds). Our results highlight how seedling communities are changed by the complex plant–animal intera ctions, triggered by the loss of seed dispersers. The results predict a rarity of primate‐dispersed trees in future tropical forest canopies; a forest less diverse in timber and non‐timber resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号