首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human cytomegalovirus (HCMV) protein UL37 exon 1 (pUL37x1), also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), sequentially traffics from the endoplasmic reticulum (ER) through mitochondrion-associated membranes (MAMs) to the outer mitochondrial membrane (OMM), where it robustly inhibits apoptosis. Here, we report the association of pUL37x1/vMIA with internal lipid rafts (LRs) in the ER/MAM. The MAM, which serves as a site for lipid transfer and calcium signaling to mitochondria, is enriched in detergent-resistant membrane (DRM)-forming lipids, including cholesterol and ceramide, which are found in lower concentrations in the bulk ER. Sigma 1 receptor (Sig-1R), a MAM chaperone affecting calcium signaling to mitochondria, is anchored in the MAM by its LR association. Because of its trafficking through the MAM and partial colocalization with Sig-1R, we tested whether pUL37x1/vMIA associates with MAM LRs. Extraction with methyl-β-cyclodextrin (MβCD) removed pUL37x1/vMIA from lysed but not intact cells, indicating its association with internal LRs. Furthermore, the isolation of DRMs from purified intracellular organelles independently verified the localization of pUL37x1/vMIA within ER/MAM LRs. However, pUL37x1/vMIA was not detected in DRMs from mitochondria. pUL37x1/vMIA associated with LRs during all temporal phases of HCMV infection, indicating the likely importance of this location for HCMV growth. Although detected during its sequential trafficking to the OMM, the pUL37x1/vMIA LR association was independent of its mitochondrial targeting signals. Rather, it was dependent upon cholesterol binding. These studies suggest a conserved ability of UL37 proteins to interact with cholesterol and LRs, which is functionally distinguishable from their sequential trafficking to mitochondria.  相似文献   

2.
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.  相似文献   

3.
The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.  相似文献   

4.
Goldmacher VS 《Biochimie》2002,84(2-3):177-185
Human cytomegalovirus encodes a powerful cell death suppressor vMIA (viral mitochondria-localized inhibitor of apoptosis), also known as pUL37x1. vMIA, a product of the immediate early gene UL37 exon 1, is predominantly localized in mitochondria, where it appears to form a complex with adenine nucleotide translocator, believed to be a component of the mitochondrial transition pore complex. vMIA suppresses apoptosis by blocking permeabilization of the mitochondrial outer membrane. Expression of vMIA protects cells against apoptosis triggered by diverse stimuli, including ligation of death receptors, exposure to certain cytotoxic drugs, and infection with an adenovirus mutant deficient in E1B19K. Deletion mutagenesis of vMIA revealed two domains that are necessary and, together, sufficient for its anti-apoptotic activity. The first domain contains a mitochondrial targeting signal. The function of the second domain is still unknown. vMIA does not share any significant amino acid sequence homology with Bcl-2, and, unlike Bcl-2 or Bcl-x(L), it does not bind BAX or VDAC. These structural and functional differences between vMIA and Bcl-2 suggest that vMIA represents a separate class of cell death suppressors. Experiments with vMIA-deficient CMV (human cytomegalovirus) mutants provide strong evidence that the anti-apoptotic function of vMIA is required to prevent CMV-induced apoptosis, and is necessary for viral replication. In addition to vMIA, UL37 encodes two longer splice-variant proteins, gpUL37 and GP37(M). Biological functions of these proteins have not yet been identified, and may be unrelated to their anti-apoptotic activity. The identification of vMIA and the finding that its anti-apoptotic function is required for CMV replication provides a rationale for the development of anti-CMV pharmaceuticals that would inactivate vMIA and thus restore apoptosis in cells infected with CMV.  相似文献   

5.
Kim Y  Park B  Cho S  Shin J  Cho K  Jun Y  Ahn K 《PLoS pathogens》2008,4(8):e1000123
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses.  相似文献   

6.
Human cytomegalovirus carries a mitochondria-localized inhibitor of apoptosis (vMIA) that is conserved in primate cytomegaloviruses. We find that inactivating mutations within UL37x1, which encodes vMIA, do not substantially affect replication in TownevarATCC (Towne-BAC), a virus that carries a functional copy of the betaherpesvirus-conserved viral inhibitor of caspase 8 activation, the UL36 gene product. In Towne-BAC infection, vMIA reduces susceptibility of infected cells to intrinsic death induced by proteasome inhibition. vMIA is sufficient to confer resistance to proteasome inhibition when expressed independent of viral infection. Murine cytomegalovirus m38.5, whose position in the viral genome is analogous to UL37x1, exhibits mitochondrial association and functions in much the same manner as vMIA in inhibiting intrinsic cell death. This work suggests a common role for vMIA in rodent and primate cytomegaloviruses, modulating the threshold of virus-infected cells to intrinsic cell death.  相似文献   

7.
8.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

9.
Viruses encode suppressors of cell death to block intrinsic and extrinsic host-initiated death pathways that reduce viral yield as well as control the termination of infection. Cytomegalovirus (CMV) infection terminates by a caspase-independent cell fragmentation process after an extended period of continuous virus production. The viral mitochondria-localized inhibitor of apoptosis (vMIA; a product of the UL37x1 gene) controls this fragmentation process. UL37x1 mutant virus-infected cells fragment three to four days earlier than cells infected with wt virus. Here, we demonstrate that infected cell death is dependent on serine proteases. We identify mitochondrial serine protease HtrA2/Omi as the initiator of this caspase-independent death pathway. Infected fibroblasts develop susceptibility to death as levels of mitochondria-resident HtrA2/Omi protease increase. Cell death is suppressed by the serine protease inhibitor TLCK as well as by the HtrA2-specific inhibitor UCF-101. Experimental overexpression of HtrA2/Omi, but not a catalytic site mutant of the enzyme, sensitizes infected cells to death that can be blocked by vMIA or protease inhibitors. Uninfected cells are completely resistant to HtrA2/Omi induced death. Thus, in addition to suppression of apoptosis and autophagy, vMIA naturally controls a novel serine protease-dependent CMV-infected cell-specific programmed cell death (cmvPCD) pathway that terminates the CMV replication cycle.  相似文献   

10.
11.
By 24 h after infection with human cytomegalovirus, the reticular mitochondrial network characteristic of uninfected fibroblasts was disrupted as mitochondria became punctate and dispersed. These alterations were associated with expression of the immediate-early (alpha) antiapoptotic UL37x1 gene product viral mitochondrion-localized inhibitor of apoptosis (vMIA). Similar alterations in mitochondrial morphology were induced directly by vMIA in transfected cells. A 68-amino-acid antiapoptotic derivative of vMIA containing the mitochondrial localization and antiapoptotic domains also induced disruption, whereas a mutant lacking the antiapoptotic domain failed to cause disruption. These data suggest that the fission and/or fusion process that normally controls mitochondrial networks is altered by vMIA. Mitochondrial fission has been implicated in the induction of apoptosis and vMIA-mediated inhibition of apoptosis may occur subsequent to this event.  相似文献   

12.
13.
Cell death suppression by cytomegaloviruses   总被引:5,自引:0,他引:5  
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 × 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological rolesand relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.  相似文献   

14.
Human cytomegalovirus (HCMV), the β-herpesvirus prototype, has evolved a wide spectrum of mechanisms to counteract host immunity. Among them, HCMV uses cellular captured genes encoding molecules capable of interfering with the original host function or of fulfilling new immunomodulatory tasks. Here, we report on UL7, a novel HCMV heavily glycosylated transmembrane protein, containing an Ig-like domain that exhibits remarkable amino acid similarity to CD229, a cell-surface molecule of the signalling lymphocyte-activation molecule (SLAM) family involved in leukocyte activation. The UL7 Ig-like domain, which is well-preserved in all HCMV strains, structurally resembles the SLAM-family N-terminal Ig-variable domain responsible for the homophilic and heterophilic interactions that trigger signalling. UL7 is transcribed with early-late kinetics during the lytic infectious cycle. Using a mAb generated against the viral protein, we show that it is constitutively shed, through its mucine-like stalk, from the cell-surface. Production of soluble UL7 is enhanced by PMA and reduced by a broad-spectrum metalloproteinase inhibitor. Although UL7 does not hold the ability to interact with CD229 or other SLAM-family members, it shares with them the capacity to mediate adhesion to leukocytes, specifically to monocyte-derived DCs. Furthermore, we demonstrate that UL7 expression attenuates the production of proinflammatory cytokines TNF, IL-8 and IL-6 in DCs and myeloid cell lines. Thus, the ability of UL7 to interfere with cellular proinflammatory responses may contribute to viral persistence. These results enhance our understanding of those HCMV-encoded molecules involved in sustaining the balance between HCMV and the host immune system.  相似文献   

15.
Human CMV encodes four unique short region proteins (US), US2, US3, US6, and US11, each independently sufficient for causing the down-regulation of MHC class I molecules on the cell surface. This down-regulation allows infected cells to evade recognition by cytotoxic T cells but leaves them susceptible to NK cells, which lyse cells that lack class I molecules. Another human CMV-encoded protein, unique long region protein 18 (UL18), is an MHC class I homolog that might provide a mechanism for inhibiting the NK cell response. The sequence similarities between MHC class I molecules and UL18 along with the ability of UL18 to form trimeric complexes with beta(2)-microglobulin and peptides led to the hypothesis that if the US and UL18 gene products coexist temporally during infection, the US proteins might down-regulate UL18 molecules, similar to their action on MHC class I molecules. We show here that temporal expression of US and UL18 genes partially overlaps during infection. However, unlike MHC class I molecules, the MHC class I homolog, UL18, is fully resistant to the down-regulation associated with the US2, US3, US6, and US11 gene products. The specific effect of US proteins on MHC class I molecules, but not on UL18, represents another example of how viral proteins have evolved to evade immune surveillance, avoiding fratricide by specifically targeting host proteins.  相似文献   

16.
MasterCARD: a priceless link to innate immunity   总被引:1,自引:0,他引:1  
Intracellular viral infection is detected by the cytoplasmic RNA helicase RIG-I, which has an essential role in initiating the host antiviral response. The adaptor molecule that connects RIG-I sensing of incoming viral RNA to downstream signaling and gene activation has recently been elucidated by four independent research groups, and has been ascribed four different names: MAVS, IPS-1, VISA and Cardif. The fact that MAVS/IPS-1/VISA/Cardif localizes to the mitochondrial membrane suggests a link between viral infection, mitochondrial function and development of innate immunity. Furthermore, the hepatitis C virus NS3/4A protease specifically cleaves MAVS/IPS-1/VISA/Cardif as part of its immune-evasion strategy. These studies highlight a novel role for the mitochondria and for caspase activation and recruitment domain (CARD)-containing proteins in coordinating immune and apoptotic responses.  相似文献   

17.
The human cytomegalovirus (HCMV) UL37 exon 1 protein (pUL37x1), also known as vMIA, is the predominant UL37 isoform during permissive infection. pUL37x1 is a potent antiapoptotic protein, which prevents cytochrome c release from mitochondria. The UL37x1 NH2-terminal bipartite localization signal, which remains uncleaved, targets UL37 proteins to the endoplasmic reticulum (ER) and then to mitochondria. Based upon our findings, we hypothesized that pUL37x1 traffics from the ER to mitochondria through direct contacts between the two organelles, provided by mitochondrion-associated membranes (MAMs). To facilitate its identification, we cloned and tagged the human phosphatidylserine synthase 1 (huPSS-1) cDNA, whose mouse homologue localizes almost exclusively in the MAM. Using subcellular fractionation of stable HeLa cell transfectants expressing mEGFP-huPSS-1, we found that HCMV pUL37x1 is present in purified microsomes, mitochondria, and MAM fractions. We further examined the trafficking of the full-length UL37 glycoprotein cleavage products, which divergently traffic either through the secretory apparatus or into mitochondria. Surprisingly, pUL37NH2 and gpUL37COOH were both detected in the ER and MAM fraction, even though only pUL37NH2 is preferentially imported into mitochondria but gpUL37COOH is not. To determine the sequences required for MAM importation, we examined pUL37x1 mutants that were partially defective for mitochondrial importation. Deletion mutants of the NH2-terminal UL37x1 mitochondrial localization signal were reduced in trafficking into the MAM, indicating partial overlap of MAM and mitochondrial targeting signals. Taken together, these results suggest that HCMV UL37 proteins traffic from the ER into the MAM, where they are sorted into either the secretory pathway or to mitochondrial importation.  相似文献   

18.
Apoptosis of virus-infected cells is one important host strategy used to limit viral infection. Recently a member of the innate immune signaling pathway, MAVS, was localized to mitochondria, an organelle important for apoptosis regulation. Here we investigate what role MAVS may play in apoptosis. Induction of cell death led to the rapid cleavage of MAVS, resulting in its release from the outer mitochondrial membrane. This cleavage is blocked in cells incubated with proteasome or caspase inhibitors. Transfection of synthetic viral dsRNA and dsDNA also led to cleavage of MAVS, indicating that this process may be important during infection. Preventing apoptosis by over-expression of anti-apoptotic Bcl-xL blocks MAVS cleavage, placing this process downstream of caspase activation in the apoptotic program.  相似文献   

19.
Pseudorabies virus (PRV) has evolved various immune evasion mechanisms that target host antiviral immune responses. However, it is unclear whether and how PRV encoded proteins modulate the cGAS-STING axis for immune evasion. Here, we show that PRV tegument protein UL13 inhibits STING-mediated antiviral signaling via regulation of STING stability. Mechanistically, UL13 interacts with the CDN domain of STING and recruits the E3 ligase RING-finger protein 5 (RNF5) to promote K27-/K29-linked ubiquitination and degradation of STING. Consequently, deficiency of RNF5 enhances host antiviral immune responses triggered by PRV infection. In addition, mutant PRV lacking UL13 impaired in antagonism of STING-mediated production of type I IFNs and shows attenuated pathogenicity in mice. Our findings suggest that PRV UL13 functions as an antagonist of IFN signaling via a novel mechanism by targeting STING to persistently evade host antiviral responses.  相似文献   

20.
Antiviral innate immunity pathways   总被引:27,自引:0,他引:27  
Seth RB  Sun L  Chen ZJ 《Cell research》2006,16(2):141-147
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号