首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palmitoyl-CoA desaturase activity in microsomes was increased up to about 4-fold within 2 h after temperature shift from 39.5 to 15 degrees C. Compared with control cells, cycloheximide-treated cells indicated no induction of palmitoyl-CoA desaturase by a decrease in temperature. The results suggest that temperature acclimation requires an increase in the level of the desaturase enzyme content.  相似文献   

2.
Changes in response to temperature of lipid classes, fatty acid composition and mRNA levels for acyl-lipid desaturase genes were studied in the marine unicellular cyanobacterium, Synechococcus sp. PCC 7002. The degree of unsaturation of C18 fatty acids increased in cells grown at lower temperature for all lipid classes, and ω3 desaturation occurred specifically in cells grown at low temperature. While the level of 18:1(9) fatty acids declined, desaturation at the ω3 position of C18 fatty acids increased gradually during a 12-h period after a temperature shift-down to 22°C. However, the mRNA levels of the desA (Δ12 desaturase), desB (ω3 desaturase) and desC (Δ9 desaturase) genes increased within 15 min after a temperature shift-down to 22°C; the desaturase gene mRNA levels also rapidly declined within 15 min after a temperature shift-up to 38°C. Therefore, the elevation of mRNA levels for the desaturase genes is not the rate-limiting event for the increased desaturation of membrane lipids after a temperature shift-down. The rapid, low-temperature-induced changes in mRNA levels occurred even when cells were grown under light-limiting conditions for which the growth rates at 22°C and 38°C were identical. These studies indicate that the ambient growth temperature, and not some other growth rate-related process, regulates the expression of acyl lipid desaturation in this cyanobacterium.  相似文献   

3.
Membrane rigidification could be the first step of cold perception in poikilotherms. We have investigated its implication in diacylglycerol kinase (DAGK) activation by cold stress in suspension cells from Arabidopsis mutants altered in desaturase activities. By lateral diffusion assay, we showed that plasma membrane rigidification with temperature decrease was steeper in cells deficient in oleate desaturase than in wild type cells and in cells overexpressing linoleate desaturase. The threshold for the activation of the DAGK pathway in each type of cells correlated with this order of rigidification rate, suggesting that cold induced-membrane rigidification is upstream of DAGK pathway activation.  相似文献   

4.
Exposure of Tetrahymena pyriformis NT-1 to chimyl alcohol (1-O-hexadecyl glycerol) produced a reproducible enhancement in unsaturated fatty acids and a great decrease in order parameter (S), which result from the 2-fold increases of stearoyl-CoA and oleoyl-CoA desaturase activities in microsomes. When the chimyl alcohol-fed cells were shifted from 34 to 15 degrees C (down-shift), unlike the drastic increases in palmitoyl-CoA, stearoyl-CoA and oleoyl-CoA desaturase activities in the native cells, there was only a slight increase in palmitoyl-CoA desaturase activity with a parallel rise in the activity of the terminal component (cyanide-sensitive factor; CSF) of the desaturase system. During cold acclimation, the decrease of order parameter in chimyl alcohol-fed cells was smaller than that in native cells, since the order parameter had already been decreased by the addition of chimyl alcohol before the shift. These results suggest that chimyl alcohol-fed cells are easily able to accomplish temperature acclimation without requiring great modification of fatty acid composition and membrane fluidity, while the non-fed control cells have difficulty doing so.  相似文献   

5.
6.
Several characteristics of the microsomal phospholipid desaturase of Candida lipolytica are described. The phospholipid desaturase reaction required molecular oxygen and reduced pyridine nucleotides as essential cofactors and was inhibited by cyanide but not by carbonmonoxide, indicating that it required cytochrome b5. Desaturation of both 1-acyl-2-[14-C]oleoyl-sn-glycero-3-phosphorylcholine and 1,2-di-[14C] oleoyl-sn-glycero-3-phosphorylcholine appeared to follow Michaelis-Menten kinetics, with apparent Km values of 2.5 10-minus 4 M and 9.5 10-minus 4 M, respectively. Desaturation of the di-[14C] oleoylphosphatidylcholine took place at both position-1 and position-2; the distearoyl or dielaidoyl phosphatidylcholines were not desaturated. Rate of desaturation of the 1=acyl-2-[14-C] oleoyl-glycerophosphorylcholine by microsomes from cold-grown cells was equal to or slightly less than that by microsomes from cells grown at the normal growth temperature of 25 degreesC, measured in the temperature range 10-30 degrees C. However, the rate of desaturation of [14-C]-oleoyl-CoA desaturase was greater with the microsomal preparation from cold-grown cells than with that from 25 degreesC grown cells. These data suggest that the observed increase of diunsaturated fatty acids in cold-grown cells may perhaps be explained by the increased activity of the oleoyl-CoA desaturase acting at the low temperature.  相似文献   

7.
Our previous results [Umeki and Nozawa (1983) Biochem. Biophys. Res. Commun. 113, 96-101] suggested that ergosterol-replaced Tetrahymena cells (ergosterol-cells) accomplish an adaptive modification of fatty-acid composition by a preferential increase in palmitoyl-CoA desaturase activity, which is principally due to the increased content of the terminal component (cyanide-sensitive factor) of the desaturase system. The present study was designed to obtain information as to how the membrane fluidity of ergosterol-cells is changed during cold temperature acclimation. The order parameter (S) of liposomes prepared from ergosterol-cell lipids was reduced more rapidly after a temperature shift-down than that of control liposomes prepared from native cells containing tetrahymanol. These results indicate that, unlike native cells containing tetrahymanol, ergosterol-cells strive to accomplish cold temperature acclimation by undergoing a great modification of membrane fluidity because of the altered microsomal desaturase activity.  相似文献   

8.
The regulatory mechanism of a key enzyme, palmitoyl-CoA desaturase, involved in the adaptation to temperature shift was investigated by labeling Tetrahymena pyriformis cells with [14C]palmitic acid. The rate of conversion of [14C]palmitate to [14C]palmitoleate was shown to be dependent on incubation temperature and also to be maximal at 2 h after the shift 39.5 to 15 degrees C. Addition of cycloheximide before the temperature shift produced no increase in desaturation of [14C]palmitate after the shift. These data would provide evidence for temperature-triggered increase of palmitoyl-CoA desaturase level and are also discussed in relation to membrane fluidity.  相似文献   

9.
The effect of polyunsaturated fatty acids on photosynthesis and the growth of the marine cyanobacterium Synechococcus sp. PCC 7002 was examined using wild-type and Δ12 fatty acid desaturase mutant strains. Under a light intensity of 250 μmol m−2 s−1, wild-type cells could grow exponentially in a temperature range of 20–38 °C, but growth was non-exponential below 20 °C and ceased at 12 °C. The Δ12 desaturase mutant cells lacking polyunsaturated fatty acids had the same growth rate as wild-type cells in a temperature range of 25–38 °C but grew slowly at 22 °C, and no cell growth took place below 18 °C. Under a very high-light intensity of 2.5 mmol m−2 s−1, wild-type cells could grow exponentially in a temperature range of 30–38 °C, although the high-light grown cells became chlorotic because of nitrogen limitation. The temperature sensitive phenotype in the Δ12 desaturase mutant was enhanced in cells grown under high-light illumination; the mutant cells could grow at 38 °C, but were killed at 30 °C. The decrease of oxygen evolution and nitrate consumption by whole cells as a function of temperature was similar in both wild type and the Δ12 desaturase mutant. No differences were observed in either light-induced damage of oxygen evolution or recovery from this damage. No inactivation of oxygen evolution took place at 22 °C under the normal light intensity of 250 μmol m−2 s−1. These results suggest that growth of the Δ12 desaturase mutant at low temperature is not directly limited by the inactivation of photosynthesis, and raise new questions about the functions of polyunsaturated membrane lipids on low temperature acclimation in cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
We have cloned a Caenorhabditis elegans cDNA encoding a Delta12 fatty acid desaturase and demonstrated its activity by heterologous expression in Saccharomyces cerevisiae. The predicted protein is highly homologous both to the cloned plant genes with similar function and to the published sequence of the C. elegans omega-3 fatty acid desaturase. In addition, it conforms to the structural constraints expected of a membrane-bound fatty acid desaturase including the canonical histidine-rich regions. This is the first report of a cloned animal Delta(12) desaturase gene. Expression of this cDNA in yeast resulted in the accumulation of 16:2 and 18:2 (linoleic) acids. The increase of membrane fluidity brought about by this change in unsaturation was measured. The production of polyunsaturated fatty acids in yeast cells and the concomitant increase in membrane fluidity was correlated with a modest increase in growth rate at low temperature and with increased resistance to ethanol and oxidative stress.  相似文献   

11.
12.
1. The incorporation and metabolism of (n-3) and (n-6) polyunsaturated fatty acids (PUFA) supplemented to growing cultures were studied in rainbow trout (RTG-2) and turbot (TF) cell lines. 2. A fatty acid concentration of 20 microM considerably altered the fatty acid composition of the cells without affecting lipid class composition or the appearance of cytoplasmic lipid droplets. 3. Both cell lines exhibited considerable delta 6 desaturase activities. 4. Whereas delta 5 desaturase activity was expressed in RTG-2 cells, delta 4 desaturase activity was absent and, conversely, delta 4 desaturase activity was expressed in TF cells, but there was an apparent deficiency in the C18 to C20 elongase multi-enzyme complex. 5. The delta 6 desaturase activity in both cell lines showed little preference between 18:2(n-6) and 18:3(n-3) but the delta 5 desaturase activity of RTG-2 cells and the delta 4 desaturase activity of TF cells showed a preference for (n-3)PUFA. 6. Two fish oil concentrates were assessed for their ability to generate fatty acid compositions in the cell lines more closely resembling those of intact fish tissues.  相似文献   

13.
Cells properly respond to extracellular stimuli and circumstantial environment. The unicellular eukaryotic protozoan Tetrahymena is a potentially useful animal cell model system for studying the molecular mechanism of adaptation to environment. Tetrahymena is exposed to fluctuations in temperature, pH, amounts of nutrients and concentration of dissolved gases in natural habitat. For example, the cells adapt to cold environment by increase in unsaturated fatty acids in membrane phospholipids to maintain proper membrane fluidity. To accomplish this modification, the activity of fatty acid desaturase is increased upon a down-shift in temperature. We have cloned delta9 fatty acid desaturase which is involved in this process and shown evidence that its mRNA level increased in response to cold environment. Moreover, in order to examine other genes responsive to clod stress, we have adopted mRNA differential display technique to temperature shift-down of T. thermophila. We have cloned two kinase genes, NIMA (never-in-mitosis in Aspergillus nidulans)-related protein kinase (TpNrk) and MAP kinase-related kinase (MRK). Interestingly, these genes were also shown to be expressed by the osmotic stress.  相似文献   

14.
15.
The usual rise in phospholipid-bound palmitoleic acid of Tetrahymena pyriformis cells slowly acclimating to low temperature exposure can be prevented by cycloheximide. This reduction in fatty acid desaturation is not caused by specific inhibition of a temperature-induced synthesis of a fatty acid desaturase but rather by a general effect equally conspicuous in isothermal cells. Cycloheximide-inhibited cells chilled and analyzed quickly, before long term ill effects of the drug are expressed, exhibit the rise in unsaturated fatty acids typical of temperature-acclimating cells.  相似文献   

16.
The usual rise in phospholipid-bound palmitoleic acid of Tetrahymena pyriformis cells slowly acclimating to low temperature exposure can be prevented by cycloheximide. This reduction in fatty acid desaturation is not caused by specific inhibition of a temperature-induced synthesis of a fatty acid desaturase but rather by a general effect equally conspicuous in isothermal cells. Cycloheximide-inhibited cells chilled and analyzed quickly, before long term ill effects of the drug are expressed, exhibit the rise in unsaturated fatty acids typical of temperature-acclimating cells.  相似文献   

17.
1. Hepatocytes were isolated by perfusion of the liver with collagenase/salt solutions and incubated in culture after attachment to plastic culture dishes for periods up to 48 h. 2. The cells, when incubated in serum-free culture medium in the presence of insulin, showed enhanced stearolyl-CoA desaturase activity which was not observed when 50 muM cycloheximide was included. When insulin was omitted from the medium, the cells lost 80% of their original desaturase activity. 3. Cells isolated from animals fed 20% (w/w) sucrose for two weeks prior to sacrifice, showed high levels of fatty acid synthesis, stearolyl-CoA desaturase activity and triacylglycerol synthesis when compared with cells isolated from animals fed a corn oil supplemental diet. 4. The observations are discussed in terms of the influence of stearoyl-CoA desaturase activity on hepatic lipogenesis.  相似文献   

18.
19.
We applied a metabolic approach to investigate the role of sphingolipids in cell density-induced growth arrest in neuroblastoma cells. Our data revealed that sphingolipid metabolism in neuroblastoma cells significantly differs depending on the cells' population context. At high cell density, cells exhibited G0/G1 cell-cycle arrest and reduced ceramide, monohexosylceramide, and sphingomyelin, whereas dihydroceramide was significantly increased. In addition, our metabolic-labeling experiments showed that neuroblastoma cells at high cell density preferentially synthesized very long chain (VLC) sphingolipids and dramatically decreased synthesis of sphingosine-1-phosphate (S1P). Moreover, densely populated neuroblastoma cells showed increased message levels of both anabolic and catabolic enzymes of the sphingolipid pathway. Notably, our metabolic-labeling experiments indicated reduced dihydroceramide desaturase activity at confluence, which was confirmed by direct measurement of dihydroceramide desaturase activity in situ and in vitro. Importantly, we could reduce dihydroceramide desaturase activity in low-density cells by applying conditional media from high-density cells, as well as by adding reducing agents, such as DTT and L-cysteine to the media. In conclusion, our data suggest a role of the sphingolipid pathway, dihydroceramides desaturase in particular, in confluence-induced growth arrest in neuroblastoma cells.  相似文献   

20.
Expression of the desC gene coding for acyl-lipid delta(9) desaturase of thermophilic cyanobacterium Synechocystis sp. PCC6803 was studied in Escherichia coli cells. In a hybrid gene constructed (desC-licBM3), a sequence of the native acyl-lipid delta(9) desaturase was fused in frame with the reporter gene coding for thermostable lichenase. Lichenase contained in the hybrid protein simplified selection and analysis of the expression of membrane desaturase in the heterologous host. Comparisons of the expression for the native and hybrid genes in bacterial cells showed that lichenase remained active and thermostable in the hybrid protein, while desaturase retains the capability of introducing a double bound in the corresponding position of fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号