首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal diet choice for large herbivores: an extended contingency model   总被引:5,自引:1,他引:4  
1. A more general contingency model of optimal diet choice is developed, allowing for simultaneous searching and handling, which extends the theory to include grazing and browsing by large herbivores.
2. Foraging resolves into three modes: purely encounter-limited, purely handling-limited and mixed-process, in which either a handling-limited prey type is added to an encounter-limited diet, or the diet becomes handling-limited as it expands.
3. The purely encounter-limited diet is, in general, broader than that predicted by the conventional contingency model.
4. As the degree of simultaneity of searching and handling increases, the optimal diet expands to the point where it is handling-limited, at which point all inferior prey types are rejected.
5. Inclusion of a less profitable prey species is not necessarily independent of its encounter rate and the zero-one rule does not necessarily hold: some of the less profitable prey may be included in the optimal diet. This gives an optimal foraging explanation for herbivores' mixed diets.
6. Rules are shown for calculating the boundary between encounter-limited and handling-limited diets and for predicting the proportion of inferior prey to be included in a two-species diet.
7. The digestive rate model is modified to include simultaneous searching and handling, showing that the more they overlap, the more the predicted diet-breadth is likely to be reduced.  相似文献   

2.
Synopsis Individual mosquitofish, Gambusia affinis, can adopt a broad range of attack selectivities. In part, this variation can be explained by the past experiences of a fish. Individuals selected the more profitable Ceriodaphnia dubia (Cladocera) over less profitable cyclopoid copepods to a greater degree after being exposed to both prey types than did individuals experienced with only one of the prey types. Feeding rate (biomass ingested per unit time) declined with increased attack specialization on the profitable prey (Ceriodaphnia) when such prey were scarce, a result in agreement with assumptions of optimal diet theory. When profitable prey were abundant feeding rate was a bimodal function of the intensity of specialization on profitable prey; fish that specialized on cyclopoid copepods (the less profitable prey type) fed at higher rates than did generalists. This may be the result of antagonistic learning that precluded feeding efficiently on more than one type of prey at a time. The data are consistent with the hypothesis that rejection of unsuitable prey involves a time cost. The two preceeding aspects of foraging behavior, which are absent from most optimal diet models, could lead to failure in predicting the attack specialization of some predators, An additional aspect of the results was the generally weak relationship between feeding efficiency and specialization behavior. This suggests that feeding rate may not have been as tightly linked to the specialization behavior a predator adopts as is assumed by current foraging theory.  相似文献   

3.
Standard optimal diet models require that a predator's behavior while searching for food does not change in response to experiences with individual prey. There is evidence for rapid and reversible changes in feeding behavior caused by as few as one or two prey encounters. When these “training effects” occur, a given prey type is more likely to be captured next if it was the last type with which the predator had experience. This is not compatible with the standard foraging model. I present a stochastic model which incorporates predator training effects, and three types of training are explored: training in the ability to detect prey (search image formation), training in the probability of succeeding in an attempted capture, and training in the time to pursue, capture, and eat prey. The main result is that all three types of training can result in optimal diets which do not obey the standard optimal diet rules. Conditions under which these rules will suffice are discussed.  相似文献   

4.
Individual variation is an inherent aspect of animal populations and understanding the mechanisms shaping resource use patterns within populations is crucial to comprehend how individuals partition resources. Theory predicts that differences in prey preferences among consumers and/or differences in the likelihood of adding new resources to their diets are key mechanisms underlying intrapopulation variation in resource use. We developed network models based on optimal diet theory that simulate how individuals consume resources under varying scenarios of individual variation in prey preferences and in the willingness of consuming alternate resources. We then investigated how the structure of individual–resource networks generated under each model compared to the structure of observed networks representing five classical examples of individual diet variation. Our results support the notion that, for the studied populations, individual variation in prey preferences is the major factor explaining patterns in individual–resource networks. In contrast, variation in the willingness of adding prey does not seem to play an important role in shaping patterns of resource use. Individual differences in prey preferences in the studied populations may be generated by complex behavioral rules related to cognitive constraints and experience. Our approach provides a pathway for mapping foraging models into network patterns, which may allow determining the possible mechanisms leading to variation in resource use within populations.  相似文献   

5.
Optimal foraging theory has dealt with the following questions independently: (1) On what prey types should an individual predator feed (optimal diet)? (2) How long should a predator stay in each patch if prey is patchily distributed (optimal allocation of time to patches) ? This paper explores optimal foraging in patches containing several different kinds of prey. Results obtained by simulation show that deviations from recent predictions are to be expected, particularly for long interpatch travel times and rapid depletion of profitable prey types. In these situations the tactics of feeding as either specialist or as a generalist can be inferior to a tactic which starts as a specialist and then expands the diet after some time in the patch. Furthermore, predators should not necessarily stay longer in a patch if interpatch travel time increases. Some experimental tests of these new predictions are proposed.  相似文献   

6.
The predator functional response to several prey types and densities may be conceptualized as a multi-dimensional version of the one-dimensional Holling functional-response curves; however, this empirical approach requires inordinate amounts of data to develop and test. A simulation method of modelling this functional response is to consider the behavior of a predator faced with the choice of several prey types. In this model, when all prey are available the predator’s selection will depend on the absolute abundance of the most-preferred prey type, irrespective of the abundances of the less-preferred prey types. Consequently, the predator will consume only the most-preferred prey types while that type is available in sufficient numbers. When abundance of the most-preferred type declines below a certain level, the predator will begin to include in its diet the second-most-preferred prey type along with the most-preferred prey type. This order-of-preference technique holds up well when the model is compared to population data fromOligonychus pratensis (Acarina: Tetranychidae)/Neoseiulus fallacis (Acarina: Phytoseiidae), and is consistent with optimal foraging theory. Implementation is simple, and the data requirements are reduced to determining the predator’s order of preference and normalizing the nutritional values of the prey types to a single type.  相似文献   

7.
In this paper we discuss uniform persistence (UP) criteria of two prey- one predator systems, where we consider that the predator's diet selection is a sigmoidal function of the most profitable prey type in place of a step function of conventional diet choice theory. We also derive UP results of the system with direct interspecific competition between the prey. The role of the most profitable prey item as a keystone species, the magnitude of its carrying capacity, the ability to withstand predation of both prey species, and the ratios of their profitability values (to predators) are important to whether or not adaptive foraging may promote UP. In general, foraging decision rules play no role in UP if the alternative prey item is the keystone species. The result is also not affected by the effect of direct competitive coexistence or dominance relationship of the prey. In some cases, dominance of one of the prey species provides the most advantageous situation for ensuring UP. Received: 1 February 1999 / Revised version: 20 September 1999 / Published online: 4 July 2000  相似文献   

8.
Summary Diets of nesting Red-tailed Hawks (Buteo jamaicensis) and Ferruginous Hawks (Buteo regalis) were sampled before and after a decline in the hawks' principal prey species. Diets of pairs that shared their foraging ranges with interspecifics were contrasted with those of pairs whose home ranges did not overlap with interspecifics. Current theory predicts that diets should diverge during prey shortages and that overlap should be especially reduced in ranges shared with interspecifics. Species composition of the two hawks' diets diverged during the prey shortage, but the divergence was most pronounced in hawks that did not share foraging ranges with interspecifics. In contrast to predictions, the two species converged on similar-sized prey during the prey shortage. Available data on differences in habitat composition and prey availability at the sample sites did not explain the deviations from the predicted response. Although our findings on diet shifts differ from those of most other studies, the implications are consistent with observations of others who have studied assemblages of mammal-feeding raptors. We conclude that diet composition of the hawks we studied was not directly affected by interspecific competition and that shifts in diet overlap during prey shortages do not necessarily imply that interspecific competition is occurring.  相似文献   

9.
Ontogenetic diet shifts are pervasive in food websbut rules governing their emergence and the implications for trophic cascades are only partly understood. Recent theoretical advances in multispecies size spectrum models (MSSMs) predict that the emergence of ontogenetic diet shifts are driven primarily by size‐selective predation and changes in the relative abundances of suitably sized prey. Howeverthese assumptions have not yet been tested with data. Herewe developed alternative MSSMs based on different assumptions about the nature of species and size‐based preferences and tested them using an extensive dietary database for the Eastern Bering Sea (EBS). MSSMs with both size and species‐specific prey preferences correctly predicted approximately three‐fold more of the diet links than those that assumed fixed species preferences. Importantlythese model assumptions also had a profound effect on the strength of fishing‐induced trophic cascades and the emergent trophic structure of the community with and without fishing. The diet‐informed models exhibited lower predation mortality ratesparticularly for small individuals (less than 1 g) whichin turnreduced the intensity and reach of fishing‐induced trophic cascades up the size spectrum. If the level and size dependency of piscivory observed in EBS predators is typical of other systemsthe potential for fishing‐induced trophic cascades may be over‐stated in MSSMs as they are currently formulated and parameterized. Representation of species‐specific ontogenetic shifts in diet can strongly influence system responses to perturbationsand the extensions we propose should accelerate adoption of MSSMs as frameworks for exploring size‐based food web theory and developing modeling tools to support strategic management decisions.  相似文献   

10.
Optimal foraging theory is extended so as to treat cases where a choice between several options is required. A new version of optimal foraging theory is derived under this assumption of simultaneous encounters of prey species and proved by using a set-theoretic approach. On the basis of this new version, it is demonstrated that, in general, no unique ranking of food types can be specified only from knowledge of the intrinsic properties of the food types. It is demonstrated that a food type may become less frequent in the diet as a result of becoming more abundant in the environment; that an increase in the abundance of a food type represented in the diet may have the effect that new food types enter the diet; and that an increase in the overall food abundance may imply that new types are included and/or old ones are excluded.  相似文献   

11.
《Animal behaviour》1986,34(2):536-544
Current models of the optimal diet are special cases of a more general (and complex) model which incorporates the effects of predation risk on diet selection; this follows from an assumption implicit in current models that all prey items are eaten where they are encountered. Relaxing this assumption so that a forager might carry a prey item to protective cover for consumption leads to the conclusion that the value of a prey item is a function of its distance to cover as well as its energy content and handling time. Such considerations can significantly alter the outcome of diet selection relative to that expected from simple diet theory. We found that grey squirrels (Sciurus carolinensis) may reject more energetically profitable, but small food items in favour of locating larger, less energetically profitable items that can be carried to protective cover for consumption without greatly sacrificing foraging efficiency. The squirrel's tendency to reject a more profitable item is a function of its distance from cover and the size of the less profitable items. Such behaviour is inconsistent with predictions of current diet models, but is consistent with our qualitative predictions based on a previously determined predation-risk-foraging-efficiency trade-off in the grey squirrel.  相似文献   

12.
Diet choice by three-spined sticklebacks was investigated under both laboratory and field conditions. In the laboratory, sticklebacks did not always choose the more profitable of two prey items; instead, they apparently selected prey according to a set of proximate decision rules based on visual cues provided by the prey. Studies of the diet of sticklebacks in the field suggest that they may use the same set of proximate decision rules to select their food and that in these more complex conditions this may lead them to feed preferentially on the more profitable types of prey. In general, sticklebacks selected zooplanktonic rather than benthic prey (which is less profitable), but the importance of benthos in the diet increased as the density of zooplankton decreased.  相似文献   

13.
Summary To investigate the factors that influence prey utilization among predators with active prey, three series of experiments were performed in which Ural owls (Strix uralensis) searched for and attacked three prey species of wild mice, Microtus montebelli, Apodemus speciosus, and A. argenteus, in a large flight cage. Over the whole study, owls attacked mice about ten times a night. The number of attacks on each prey species did not differ from that predicted by a random attack model. M. montebelli was taken more than either Apodemus species. Prey utilization appears to be influenced by prey susceptibilities only and it is unlikely that prey selection by the owls affected prey utilization patterns. Under the experimental conditions, random attack is predicted by optimal foraging theory. However, random attack may be explained just as well by the inability of the owl to discriminate prey type. The owls, energy gain was adjusted not by alteration in the number of attacks on a prey species but rather by alteration in the capture success between experiments. Capture success increased in poor food conditions for the same prey species. This flexibility in capture success has not been considered in the assumptions of optimal foraging theory. In conventional optimal foraging theory, the probability of capture success is implicitly assumed as constant and unity. We suggest that this assumption is inadequate to understand the foraging behavior of owls.  相似文献   

14.
This paper extends existing models of frequency-dependent diet selection by considering the optimal diet selection of a predator feeding upon prey populations which can be depleted but are also capable of renewal (e.g. immigration, growth, or reproduction). This model and existing models which include prey depletion, predict partial-preference and a generic diet preference for the commonest prey types (apostatic selection). Unlike previous diet selection models, it is found that the optimal diet selection of an individual predator can be to favour the rarest prey type (anti-apostatic selection) when encounter rates are high, even if the individual prey do not differ in their nutritional value. Studies have demonstrated that predators generally show apostatic selection, even when all prey have the same nutritional value. Anti-apostatic selection has also been observed when prey are crowded, and therefore at high density, consistent with the idea of high encounter rates. This anti-apostatic diet selection has previously been proposed as evidence for the use of prey search images by a predator, or variation in individual prey preference. In this paper it is suggested that prey renewal is a further factor, often confounded in experiments, which could favour anti-apostatic selection.  相似文献   

15.
The relationship between the encounter rate of predators with prey and the density of this prey is fundamental to models of predator-prey interactions. The relationship determines, among other variables, the rate at which prey patches are depleted, and hence the impact of predator populations on their prey, and the optimal spatial distribution of foraging effort. Two central assumptions that are made in many models are that encounter rate is directly proportional to prey density and that it is independent of the proportion of prey already removed, other than via the decreased density. We show here, using captive great tits searching for winter moth caterpillars in their natural hiding positions, that neither of these assumptions hold. Encounter rate increased less than directly in proportion to prey density, and it depended not only on the current density of prey, but also on the proportion of prey already removed by previous foragers. Both of these effects are likely to have major consequences for the outcome of predator-prey interactions.  相似文献   

16.
Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behaviour – yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual‐level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators.  相似文献   

17.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

18.
Amongst raptor species, individuals with specialized diets are commonly observed to have higher reproductive output than those with general diets. A suggested cause is that foraging efficiency benefits accrue to diet specialists. This diet specificity hypothesis thus predicts that diet breadth and reproductive success should be inversely related within species. We highlight, however, that a prey availability hypothesis also makes the same prediction in some circumstances. Hence, when high diet specificity results from high encounter rates with an abundant, preferred prey, then prey availability may affect reproductive success, with diet specialization as an incidental correlate. Using three insular study areas in western Scotland, we examine diet specificity and reproductive success in Golden Eagles Aquila chrysaetos. Diet breadth and breeding productivity were not negatively related in any of our study areas, even though birds with specific diets did tend to have a higher incidence of preferred prey (grouse and lagomorphs) in the diet. Indeed, in two study areas there was evidence that diet generalists had higher breeding productivity. Our results therefore failed to support the diet specificity hypothesis but were consistent with the prey availability hypothesis. We highlight that although many other studies are superficially consistent with the diet specificity hypothesis, our study is not alone in failing to provide support and that the hypothesis does not provide a generic explanation for all relevant results. Diet specificity in predators can be at least partially a response to prey diversity, availability and distribution, and benefits associated with different prey types, so that being a generalist is not necessarily intrinsically disadvantageous. We suggest that the available evidence is more consistent with variation in prey abundance and availability as a more influential factor explaining spatial and temporal variation in breeding productivity of ‘generalist’ species such as the Golden Eagle. Under this argument, prey abundance and availability are the main drivers of variation in reproductive output. Diet specificity is a consequence of variation in prey availability, rather than a substantial cause of variation in reproductive success.  相似文献   

19.
Most current models for optimal food selection apply to ecological and behavioural optimization. In this paper optimal food selection theory is extended to apply to evolutionary optimization. A general evolutionary model for optimal food selection must incorporate the concept of fitness sets--or that variables, changing as a result of natural selection in evolutionary time, cannot, in general, vary independently of each other. A "Charnov type" optimal food selection model with a fitness set is investigated, and evolutionarily stable strategy (ESS) solutions of the evolutionary variables (i.e., the efficiencies of using available food types) are found. From this analysis it follows that the relative frequency of various food types in the environment may, under specified conditions, influence the evolutionarily optimal diet. Secondly, the analysis demonstrates that a food type not in the optimal diet may, in evolutionary time, be added to this by becoming more abundant. Thirdly, it follows from the analysis that the ecological result of MacArthur and Pianka, that food types are worth eating even if there is competition for them, is not generally applicable when referring to an evolutionary time scale. Finally, it is pointed out that for the diet to be an ESS, it is necessary that the consumer's density is stable and that the consumer's population dynamics are subjected to some density-dependent factor.  相似文献   

20.
Categorization of similar prey types and the application of decision rules by dietary generalists can enhance the efficiency of foraging decisions and facilitate the inclusion of novel prey types in the diet. While considerable research attention has been directed toward investigation of these concepts in invertebrates, few have assessed categorization and decision rules used by generalist vertebrate predators. In this study, we experimentally investigated decision rules and prey preferences of northwestern crows (Corvus caurinus) feeding on littleneck clams (Tapes philippinarum) and whelks (Nucella lamellosa). We presented crows with three species‐size combinations: small clams (2.0–2.9 cm length) paired with large whelks (4.0–4.9 cm), small clams paired with medium whelks (3.0–3.9 cm), and large clams (4.0–4.9 cm) with large whelks. Profitability estimates based on observations of crows feeding on these prey species indicated that clams were always the more energetically profitable option; however, in prey choice trials crows consistently selected the heavier prey species, regardless of differences in profitability. These results show that crows apply a general decision rule according to which they select heavier prey items when feeding on hard‐shelled prey requiring similar handling techniques, and that while such decision rules may approximate optimal choices they may not always follow predictions based solely on prey profitability. We discuss these results in the context of behavioural flexibility of generalist predators, and predicting impacts of intertidal avian predators on prey populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号