首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A double label design was used to study the in vivo incorporation of [U-14C] and [2-3H]glycerol into total and individual phospholipids of various brain subcellular fractions isolated from 20-day old normal and undernourished rats. In control animals, synthesis of glycerophospholipids of microsomes, mitochondria and nerve endings seems to occur through the glycerol-3-phosphate (G-3-P) pathway while a large part of the synthesis of myelin glycerophospholipids appears to proceed through the dihydroxyacetone phosphate (DHAP) pathway. In starved animals, on the other hand the incorporation of phospholipid precursors through the DHAP pathway was found to be lower than in controls while synthesis of phospholipids in the other subcellular fractions was unaffected.The possible relationship between the synthesis of glycerophospholipids and especially plasmalogens of the myelin membrane and microperoxisomes of oligodendroglial cells, where the enzymes of the DHAP pathway are located, is discussed.  相似文献   

2.
《Insect Biochemistry》1976,6(4):381-384
The red flight musculature of Schistocerca gregaria contains twice as much phospholipids than the white femoral musculature. In individual phospholipids the difference is greatest in phosphatidylethanolamine and phosphatidylglycerol, lowest in sphingomyeline and phosphatidylinositol. The plasmalogen content is very low. After an injection of 32P orthophosphate the increase of specific activity during six days follows a similar course in both muscle types in phosphatidylethanolamine, sphingomyeline and phosphatidylserine but is more rapid in red than in white muscle in phosphatidylcholine (1.3 ×) and in phosphatidylinositol (5 ×). The incorporation into diphosphatidylglycerol is extremely slow. Flight induces an increase in the specific activity in phosphatidylinositol.  相似文献   

3.
The lipids of Acanthamoeba castellanii (Neff) consist of 52% neutral lipids and 48% polar lipids. Triglycerides account for 75% and free sterols for 17% of the neutral lipids. The major phospholipids are phosphatidylcholine (45%), phosphatidylethanolamine (33%), phosphatidylserine (10%), a phosphoinositide (6%), and diphosphatidylglycerol (4%). The phosphoinositide is unique in that it contains fatty acids, aldehyde, inositol, and phosphate in the ratio of 1.4:0.5:1.1, but it contains no glycerol. Sphingomyelin, cerebrosides, psychosine, and glycoglycerides were not detected, but small amounts of unidentified long chain bases and sugars are present. The rates of uptake of palmitate-1-14C and of its incorporation into glycerides and phospholipids were not affected by the phagocytosis of polystyrene latex beads. Although phagocytosis usually decreased the uptake by amebas of phosphate-32P, serine-U-14C, and inositol-2-3H, their subsequent incroporation into phospholipids was not demonstrably stimulated or inhibited by phagocytosis. Phagocytosis did seem to increase the incorporation into ameba phospholipids of phosphatidylcholine-1 ,2-14C but not that of phosphatidylethanolamine-1 ,2-14C. These experiments, in which the incorporation of radioactive precursors into total cell lipids was measured, do not, of course, eliminate the possibility that localized effects may occur.  相似文献   

4.
Abstract— The time course of incorporation, between 3 hr and 16 days, of ortho[32P]phosphate into different membranous structures isolated from the rat cerebral cortex was studied. After subarachnoideal administration into the CSF it was found that myelin, mitochondria, microsomes and purified nerve-ending membranes and synaptic vesicles incorporate 32P at the same rate. Most of the individual phospholipids of the synaptic vesicles and nerve-ending membranes also have similar rates of incorporation. Only phosphoinositides and/or phosphatidylserine may have a more rapid metabolism. The incorporation of 32P into phosphoproteins follows a different pattern from that of the phospholipids. The intraperitoneal route is less effective in the 32P incorporation and differences among the fractions may be found. These results are discussed in relation to the problem of the blood-brain barrier to phosphate and to the labelling of individual phospholipids in the different membranes.  相似文献   

5.
A respiratory-competent wild-type strain and a nuclear isogenic, mitochondrial DNA-less, petite mutant strain of Saccharomyces cerevisiae were grown under conditions of catabolite repression in batch cultures and under conditions of catabolite derepression in chemostat cultures. Subcellular fractions were isolated and the capacity of these fractions to incorporate sn-[2-3H]glycerol 3-phosphate into phospholipids was studied. Neither catabolite repression nor loss of mitochondrial DNA appreciably altered the total in vitro lipid synthesized by mitochondrial fractions during the incubation. Mitochondria isolated from catabolite-derepressed wild-type and petite cells had approximately the same specific activity in vitro for the synthesis of phosphatidylinositol. phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, and neutral lipids. Mitochondria isolated from the petite cells retained the capacity to synthesize phosphatidylglycerol and diphosphatidylglycerol, although the synthesis of these phospholipids was far less extensive than that by the mitochondria isolated from the wild-type cells. In both cases, mitochondria prepared from catabolite-repressed cells synthesized a greater proportion of phosphatidylserine than did mitochondria from catabolite-derepressed cells. The proportions of phospholipid species synthesized in vitro by the microsomal fractions studied were not grossly affected by catabolite repression or loss of mitochondrial DNA.  相似文献   

6.
R. Baxter  J. B. Hanson 《Planta》1968,82(3):246-260
Summary Dark-grown, 3-day-old soybean seedlings were sprayed with 1 mM 2,4-dichlorophenoxyacetic acid 24 hours before harvest. Mitochondria from 2,4-D-treated lower hypocotyls were found to be larger and showed greater incorporation in vivo, of amino acids into protein and phosphate into phospholipids and RNA, than mitochondria from untreated tissue. Mitochondria isolated from 2,4-D-treated hypocotyls showed an enhanced energy-dependent incorporation of amino acids into protein, although the incorporation of nucleoside triphosphates into the RNA of isolated mitochondria was not affected. No effect of 2,4-D, applied in vitro, was noted, and no enhancement of mitochondrial respiratory efficiency followed auxin treatment. A method of isolating mitochondria with a very low level of bacterial contamination is reported.  相似文献   

7.
The metabolism of phospholipids in mouse brain slices   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Slices of mouse brain grey matter were incubated with [32P]phosphate and [1-14C]acetate. Doubly labelled phospholipids were extracted from subcellular fractions prepared from the slices in a mixture of metabolic inhibitors, under conditions where there was negligible change in radioactive labelling during the preparation. Two tissue fractions were studied in detail; one contained a high proportion of mitochondria and the other was mainly microsomal. 2. In all tissue fractions the highest incorporations of both [32P]phosphate and [1-14C]acetate occurred into phosphatidylcholine. 3. After incubation for 1hr., the 32P/14C ratios for phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid in the mitochondrial fraction were similar to those in the microsomal fraction. 4. The 32P/14C ratios were similar in phosphatidylcholine and phosphatidylethanolamine and much lower than those in phosphatidic acid and phosphatidylinositol.  相似文献   

8.
It is generally recognized nowadays that active lipid metabolism takes place in the nucleus of a mammalian cell. Experimental data testify to the biosynthesis of polyphosphoinositides and phosphatidylcholine and reveal corresponding enzymes within nuclei of mammalian cells. These findings suggest that lipidmediated signaling pathways in nuclei operate independently of lipid-mediated regulatory mechanisms functioning in membranes and cytosol. To explore the pathways of intranuclear lipid biosynthesis, we studied incorporation of 2-14C-acetate into lipids of cytosol and isolated nuclei of rat thymus cells after separate and combined incubation with the labeled precursor. The most efficient incorporation of 2-14C-acetate into lipids (cholesterol, free fatty acids, and phospholipids) was observed in a reaction mixture containing cytosol. When the reaction mixture contained only nuclei, incorporation of the radioactive precursor into lipids also took place, but specific radioactivity of the lipids was essentially lower than in the cytosol. In both cases, 2-14C-acetate incorporated into phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, and cardiolipin. Phosphatidylcholine, the most abundant membrane phospholipid, demonstrated the lowest radioactivity, which was significantly lower than that of phosphatidylethanolamine. Incorporation of newly synthesized free fatty acids in nuclear phospholipids was inhibited, if nuclei were incubated with cytosol. As a result, radioactive free fatty acids were accumulated in nuclei, while in cytosol they were efficiently incorporated into phospholipids. The levels of phospholipids and cholesterol remained constant regardless of incubation protocol, while the overall yield of free fatty acids decreased after combined incubation of nuclear and cytosolic fractions or after incubation of cytosol without nuclei. Putative mechanisms underlying the appearance of radioactive lipids in isolated nuclei of thymus cells are discussed.  相似文献   

9.
The specific radioactivity of [32P]-phosphate incorporated into muscle phosphofructokinase was in equilibrium with the specific radioactivity of the γ-phosphate group of ATP. The incorporation was independent of the presence of cycloheximide. The total content of covalently bound phosphate in phosphofructokinase was correlated with the functional state of the muscle from which the enzyme was purified. Muscle dissected post mortem led to phosphofructokinase containing less than 2 phosphate groups per tetramer. Muscle dissected in vivo gave phosphofructokinase with 4 phosphates per tetramer when kept at rest and 8 phosphates per tetramer when stimulated to contract.  相似文献   

10.
32P incorporation into different rat-brain cortex neuronal and glial phospholipids was investigated. The half life of each compound was measured. Neuronal phospholipids had a faster turnover than glial phospholipids. Phosphatidyl-inositol and choline plasmalogen had the fastest, diphosphatidylglycerol the lowest turnover in both cell-types. Phosphatidylcholine, ethanolamine phospholipids and serine phospholipids had turnover intermediate with that of the previously described compounds. Turnover of neuronal sphingomyelin was similar to that of phosphatidylcholine, whereas in glial cells it was much lower.  相似文献   

11.
A study was conducted on the in vivo incorporation of l -[14C]-serine into the lipids and proteins of the various subcellular fractions of the developing rat brain before and during the stage of active myelination. The total radioactivity in the various fractions at 12 days of age was higher than that at 3 days, while the radioactive specific activity was reversed. The specific activities of the proteins and lipids were higher at 3 days of age with the exception of the subcellular fraction containing myelin. At both ages the lipids of the various cellular fractions had similar specific activities, a finding that suggests a common source for lipid biosynthesis. Incorporation of radioactivity into the various phospholipids was in the following order: phosphatidyl serine > phosphatidyl ethanolamine > phosphatidal serine > sphingomyelin and phosphatidyl choline. Of all the phospholipids, the plasmalogens increased most in total radioactivity during the period when meylination was most active. Serine-containing phospholipids appear to be most tightly bound to proteins. The brain mitochrondrial fraction contained most of the phosphatidyl serine decarboxylase activity with some activity in the nuclei. Biosynthesis of phosphatdyil ethanolamine through decarboxylation of phosphatidyl serine could take place in rat brain. Four unidentified radioactive metabolites were found in the acid-soluble fraction in addition to l -[14C]serine.  相似文献   

12.
Summary Rat liver mitochondria were fractionated into inner and outer membrane components at various times after the intravenous injection of14C-leucine or14C-glycerol. The time curves of protein and lecithin labeling were similar in the intact mitochondria, the outer membrane fraction, and the inner membrane fraction. In rat liver slices also, the kinetics of3H-phenylalanine incorporation into mitochondrial KCl-insoluble proteins was identical to that of14C-glycerol incorporation into mitochondrial lecithin. These results suggest a simultaneous assembly of protein and lecithin during membrane biogenesisThe proteins and lecithin of the outer membrane were maximally labeledin vivo within 5 min after injection of the radioactive precursors, whereas the insoluble proteins and lecithin of the inner membrane reached a maximum specific acitivity 10 min after injection.Phospholipid incorporation into mitochondria of rat liver slices was not affected when protein synthesis was blocked by cycloheximide, puromycin, or actinomycin D. The injection of cycloheximide 3 to 30 min prior to14C-choline did not affect thein vivo incorporation of lecithin into the mitochondrial inner or outer membranes; however treatment with the drug for 60 min prior to14C-choline resulted in a decrease in lecithin labeling. These results suggest that phospholipid incorporation into membranes may be regulated by the amount of newly synthesized protein available.When mitochondria and microsomes containing labeled phospholipids were incubated with the opposite unlabeled fractionin vitro, a rapid exchange of phospholipid between the microsomes and the outer membrane occurred. A slight exchange with the inner membrane was observed.  相似文献   

13.
The effect of norepinephrine and acetylcholine on the 32P incorporation into phospholipids of normal and sympathetically denervated rabbit iris muscle was investigated. (1) In the absence of exogenously added neurotransmitters sympathetic denervation exerted little effect on the incorporation of 32P into the phospholipids of the excised iris muscle. In vivo thr iris muscle incorporated 32P into phosphatidylinositol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin in that order of activity while in vitro phosphatidylinositol was followed by phosphatidylcholine. (2) Tension responses of iris dilator muscle from denervated irises exhibited supersensitivity to norepinephrine. Furthermore, norepinephrine at concentrations of 3 μM and 30 μM produced 1.6 times and 3 times stimulation of the phosphatidic acid of the denervated muscle respectively. In contrast at 30 μM it stimulated this phospholipid by 1.6 times in the normal muscle. This stimulation was completely blocked by phentolamine. (3) While in the normal muscle acetylcholine stimulated the labelling of phosphatidic acid and phosphatidylinositol by more than 2 times, in the denervated muscle it only stimulated 1.4 to 1.7 times. (4) Similarly when 32Pi was administered intracamerally, the labelling found in the various phospholipids of the denervated iris was significantly lower than that of the normal. (5) It was concluded that denervation decreases the 32P labelling in the presence of acetylcholine. (6) The norepinephrine-stimulated 32P incorporation into phosphatidic acid appears to be post-synaptic.  相似文献   

14.
Wild-type Rhodobacter sphaeroides chromatophores were fused at acidic pH, or by freezing and thawing, with liposomes of soybean phospholipids, phosphatidylserine, phosphatidylglycerol or diphosphatidylglycerol. Equilibrium centrifugation after fusion yielded several fractions. Freeze-fracture electron microscopy showed that fusion resulted in the formation of unilamellar vesicles of diameters larger than that of chromatophores. The lateral density of the intramembrane particles decreased; the asymmetry between the two fracture faces was lost after fusion with soybean phospholipids or phosphatidylserine or phosphatidylglycerol, but gradually disappeared in parallel with diphosphatidylglycerol enrichment. After fusion with phosphatidylserine, when the fractions were frozen from below the lipid transition temperature intramembrane particles aggregated into patches surrounded by smooth lipid zones. A massive incorporation of the fusogen phospholipid was observed in the fractions together with a strong decrease of phosphatidylglycerol and a lower decrease of phosphatidylcholine and aminolipid. The 800 nm absorption band of the B800–850 antenna complex was reduced or suppressed depending on the nature of the lipids while the spectroscopic alteration of B875 chromophore was weaker. The light-induced bandshifts of carotenoid and antenna bacteriochlorophyll were also much weaker or absent; this could result from a desorganization of the B800–850 antenna, or from an impaired capacity to sustain a photoinduced membrane potential. The reaction center was not affected by the fusion, and the polypeptide composition of the various fractions did not show qualitative differences from the chromatophore pattern. Spheroplasts did not show the same capacity of fusion as chromatophores.  相似文献   

15.
The pretreatment of rat liver mitochondrial fractions with phospholipase C preparations enhanced the incorporation of cytidine diphospho-[14C]-choline into phospholipids several-fold. Similar pretreatment of the microsomal fraction produced a similar stimulation. When the extent of microsomal contamination in the mitochondria was determined, and increments of pretreated microsomes were added to the mitochondria, the incorporation values extrapolated to zero for zero microsomal contamination. It was concluded that lecithin biosynthesis from endogenous diglycerides in the mitochondrial fractions could be ascribed to contaminating microsomes.  相似文献   

16.
Coté GG  Crain RC 《Plant physiology》1992,100(2):1042-1043
Some pulvini of Samanea saman Mehr. labeled with radioactive phosphate show apparent remarkable elevations of the levels of phosphatidic acid and phosphatidylinositol 4,5-bisphosphate. The elevated levels, however, appear to be illusory and to result from rapid initial incorporation of label into these phospholipids relative to others. These results demonstrate the need for caution in interpreting apparent changes in the levels of phosphatidic acid or inositol phospholipids in cultures or plants labeled with radioactive precursors.  相似文献   

17.
Abstract— Young rat cerebral-cortex slices were incubated with 32Pi in the absence and presence of ACh plus eserine, norepinephrine, dopamine or serotonin for 1 h. their cellular and subcellular fractions were isolated, and the specific radioactivities of the various phospholipids determined. In the neuronal- and astroglial-enriched fractions ACh plus eserine increased the 32P-labelling of phosphatidyl inositol (PhI) phosphatidic acid (PhA) and phosphatidylcholine (PhC) by increments which ranged from 108 per cent for PhI to 30 per cent for PhC and in the presence of norepinephrine or dopamine these increments ranged from 180 per cent for PhI to 29 per cent for PhC. In the subcellular fractions ACh plus eserine exerted maximal stimulatory effect on the labelling of the synaptosomal phospholipids, which was 88 per cent for PhI and 79 per cent for PhA, followed by those of microsomes, mitochondria and nuclei. ACh plus eserine exerted no effect on [l4C]glucose incorporation, but inhibited the incorporation of [14C]glycerol into phospholipids by amounts which ranged from 30 per cent for PhI to 3 per cent for PhE. Although the rate of incorporation of 32Pi into phospholipids of 0.2 mm slices was higher than that of the 0.5 mm slices the stimulatory effect of ACh plus eserine on the 32Pi incorporation into the lipids of the latter was higher. When neuronal- and astroglial enriched fractions were first isolated from the cerebra then incubated with 32Pi or [14C]choline, labelling of phospholipids in the neuronal fraction was higher than that of the astroglial fraction; however, ACh plus eserine had no effect on the incorporation of 32Pi into the lipids of either fraction. ACh plus eserine stimulated the activity of phosphatidic acid phosphatase in the various subcellular fractions by increments which ranged from 13 per cent in nuclei to 37 per cent in microsomes. It was concluded that the nonspecific localization of the neurotransmitter effect could be due to the widespread distribution of the enzymes which appear to be responsive to cholinergic and adrenergic neurotransmitters.  相似文献   

18.
The catecholamine-induced phosphorylation of cardiac muscle protein was investigated using a rat ventricular muscle slice preparation. Slices 0.5 mm thick and weighing 40–50 mg were incubated for 40 min in oxygenated bathing medium containing 32P to partially label intracellular ATP. Subsequent addition of 10?5 M isoproterenol for 10 min resulted in a 44–63% (based on protein) or a 63–70% (based on inorganic phosphate) increase in 32P incorporation into 100 000 × g particulate and 100 000 × g supernatant (soluble) fractions without an increase into homogenates, 1000 and 29 000 × g particulate fractions prepared from the slices. The catecholamines also produced a 93% increase in 32P incorporation ans a 27% increase in inorganic phosphate in trichloroacetic acid-insoluble protein that was obtained from ventricular slice homogenates. A significant increase in the incorporation of 32P occurred in the 100 000 × g particulate and supernatant fractions and the acid-insoluble protein within 2 and 1 min, respectively. While the β-adrenergic blocking agent propanolol had no effect by itself on 32P incorporation, it prevented the isoproterenol-induced incorporation of 32P into the 100 000 × g particulate and supernatant fractions and the acid-insoluble protein. Removal of isoproterenol from the bathing medium eliminated the differences in 32P incorporation, indicating that the effects of the catecholamine were reversible. Norepinephrine and ipinephrine at 10?5 M caused phosphorylation effects similar to that of isoproterenol. When the slices were bathed under anoxic conditions isoproterenol failed to enhance the incorporation of 32P into proteins of the 100 000 ×g particulate and supernatant fractions or acid-insoluble protein. SDS gel eloectrophoresis of ventricular slice homogenates revealed that isoproterenol enhanced the 32P incorporation into several myocardial proteins having molecular weights of 155, 94 (glycogen phosphorylase), 79, 68–77, and 54–59 · 103 and decreased the incorporation into a 30 · 103 dalton protein(s). These results are consistent with the notion that catecholamines may increase the phosphorylation of myocardial proteins in the intact myocardium which in turn may play a role in catecholamine-induced glycogenolysis and augmentation of contractility.  相似文献   

19.
1. The use of ;marker' enzymes for investigating the contamination by endoplasmic reticulum of mitochondrial and synaptosomal (nerve-ending) fractions isolated from guinea-pig brain was examined. NADPH-cytochrome c reductase appeared to be satisfactory. With the synaptosomal preparation there was a non-occluded enzymic activity believed to arise from contaminating microsomes and an occluded form released by detergent, which probably was derived from some type of intraterminal smooth endoplasmic reticulum. 2. Isolated brain mitochondria, both intact and osmotically shocked, could not synthesize more labelled phosphatidylcholine from CDP-[Me-(14)C]choline or phosphoryl[Me-(14)C]choline than could be accounted for by microsomal contamination. They could synthesize only phosphatidic acid and diphosphatidylglycerol from a [(32)P]P(i) precursor and not nitrogen-containing phosphoglycerides or phosphatidylinositol. 3. The synaptosomal outer membrane and the intraterminal mitochondria could not synthesize phosphatidylcholine from CDP-[Me-(14)C]choline but the synaptic vesicles and probably the intraterminal ;endoplasmic reticulum' appeared to be capable of catalysing the incorporation of label from this substrate into their phospholipids. 4. Microsomal fractions and synaptosomes from guinea-pig brain could incorporate [Me-(14)C]choline into their phospholipids by a non-energy-requiring exchange process, which was catalysed by Ca(2+). Fractionation of the synaptosomes after such an exchange had taken place revealed that the label was predominantly in the intraterminal mitochondria and not associated with membranes containing NADPH-cytochrome c reductase. 5. On the intraperitoneal injection of [(32)P]P(i) into guinea pigs, incorporation of radioactivity into phosphatidylinositol and phosphatidic acid was much faster than into the nitrogen-containing phosphoglycerides. Mitochondria and microsomal fractions showed a roughly equivalent incorporation into individual phospholipids, and that into synaptosomes was appreciably less, whereas the phospholipids of myelin showed little (32)P incorporation up to 10h.  相似文献   

20.
Summary Inhibitors of, and radioactive substrates for, protein synthesis were introduced into germinating pea (Pisum sativum L.) seeds, and protein synthesis was allowed to proceed in vivo. Subsequent analyses of subcellular fractions showed the following: Cycloheximide strongly inhibited the incorporation of [14C]leucine into both mitochondrial and cytoplasmic proteins. d-Threo-chloramphenicol and erythromycin did not affect cytoplasmic protein synthesis, but partially inhibited mitochondrial protein synthesis. These results suggest that most of the new mitochondrial proteins were originally synthesized in the cytoplasm. Actinomycin D did not appreciably affect the initial incorporation of [14C]leucine into either mitochondrial or cytoplasmic proteins, suggesting that information (mRNA) concerning the initially synthesized proteins may be present in the quiescent seeds. The lack of appreciable incorporation of [3H]thymidine into mitochondrial DNA supported our previons report that mitochondria may not be synthesized de novo in pea cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号