首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in membrane properties during the differentiation process in K562 cells have been investigated. A decrease of lectin-induced agglutination has been detected. The agglutination assay revealed to be an early and sensitive test to monitor the induced differentiation of the K562 cells. Naturally occurring fluorescent fatty acids (cis- and trans-parinaric acids) and the recently developed multifrequency phase and modulation technique were used to study cell membrane properties. Changes in fluorescence lifetime and polarization are clearly associated with cell differentiation, suggesting the involvement of the cellular plasma membrane in the differentiation process.  相似文献   

2.
The 90-kDa heat shock proteins (HSP90) are important in the regulation of numerous intracellular processes in eukaryotic cells. In particular, HSP90 has been shown to be involved in the control of the cellular differentiation of the protozoan parasite Leishmania donovani. We investigated the role of HSP90 in the related parasite Trypanosoma cruzi by inhibiting its function using geldanamycin (GA). GA induced a dose-dependent increase in heat shock protein levels and a dose-dependent arrest of proliferation. Epimastigotes were arrested in G1 phase of the cell cycle, but no stage differentiation occurred. Blood form trypomastigotes showed conversion towards spheromastigote-like forms when they were cultivated with GA, but differentiation into epimastigotes was permanently blocked. We conclude that, similar to leishmanial HSP90, functional HSP90 is essential for cell division in T. cruzi and serves as a feedback inhibitor in the cellular stress response. In contrast to L. donovani cells, however, T. cruzi cells treated with GA do not begin to differentiate into relevant life cycle stages.  相似文献   

3.
Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic β-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-β inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.  相似文献   

4.
Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.  相似文献   

5.
In many cases, the process of cancer cell differentiation is associated with the programmed cell death. In the present study, interestingly, we found that eupatilin, one of the pharmacologically active ingredients of Artemisia asiatica that has been reported to induce apoptosis in human gastric cancer AGS cells, also triggers differentiation of these cells. Treatment of AGS cells with eupatilin induced cell cycle arrest at the G1 phase with the concomitant induction of p21cip1, a cell cycle inhibitor. This led us to test whether eupatilin may trigger AGS cells to differentiate into the matured phenotypes of epithelial cells and this phenomenon may be coupled to the apoptosis. Eupatilin induced changes of AGS cells to a more flattened morphology with increased cell size, granularity, and mitochondrial mass. It also markedly induced trefoil factor 1 (TFF1), a gene responsible for the gastrointestinal cell differentiation. Eupatilin dramatically induced redistribution of tight junction proteins such as occludin and ZO-1, and F-actin at the junctional region between cells. It also induced phosphorylation of extracellular signal-regulated kinase 2 and p38 kinase. Blockade of ERK signaling by PD098059 or the dominant-negative ERK2 significantly reduced eupatilin-induced TFF1 and p21 expression as well as ZO-1 redistribution, indicating that ERK cascades may mediate eupatilin-induced AGS cell differentiation. Collectively, our results suggest that eupatilin acts as a novel anti-tumor agent by inducing differentiation of gastrointestinal cancer cells rather than its direct role in inducing apoptotic cell death.  相似文献   

6.
Small cell lung cancer (SCLC) accounts for nearly 15% of human lung cancers and is one of the most aggressive solid tumors. The SCLC cells are thought to derive from self-renewing pulmonary neuroendocrine cells by oncogenic transformation. However, whether the SCLC cells possess stemness and plasticity for differentiation as normal stem cells has not been well understood thus far. In this study, we investigated the expressions of multilineage stem cell markers in the cancer cells of SCLC cell line (NCI-H446) and analyzed their clonogenicity, tumorigenicity, and plasticity for inducing differentiation. It has been found that most cancer cells of the cell line expressed multilineage stem cell markers under the routine culture conditions and generated single-cell clones in anchorage-dependent or -independent conditions. These cancer cells could form subcutaneous xenograft tumors and orthotopic lung xenograft tumors in BALB/C-nude mice. Most cells in xenograft tumors expressed stem cell markers and proliferation cell nuclear antigen Ki67, suggesting that these cancer cells remained stemness and highly proliferative ability in vivo. Intriguingly, the cancer cells could be induced to differentiate into neurons, adipocytes, and osteocytes, respectively, in vitro. During the processes of cellular phenotype-conversions, autophagy and apoptosis were two main metabolic events. There is cross-talking between autophagy and apoptosis in the differentiated cancer cells. In addition, the effects of the inhibitor and agonist for Sirtuin1/2 on the inducing osteogenic differentiation indicated that Sirtuin1/2 had an important role in this process. Taken together, these results indicate that most cancer cells of NCI-H446 cell line possess stemness and plasticity for multilineage differentiation. These findings have potentially some translational applications in treatments of SCLC with inducing differentiation therapy.  相似文献   

7.
Many of the components that regulate the circadian clock have been identified in organisms and humans. The influence of circadian rhythm (CR) on the regulation of stem cells biology began to be evaluated. However, little is known on the role of CR on human mesenchymal stem cell (hMSCs) properties. The objective of this study was to investigate the influence of CR on the differentiation capacities of bone marrow hMSCs, as well as the regulation of cell cycle and migration capabilities. To that, we used both a chemical approach with a GSK-3β specific inhibitor (2’E,3’Z-6-bromoindirubin-3’-oxime, BIO) and a knockdown of CLOCK and PER2, two of the main genes involved in CR regulation. In these experimental conditions, a dramatic inhibition of adipocyte differentiation was observed, while osteoblastic differentiation capacities were not modified. In addition, cell migration was decreased in PER2-/- cells. Lastly, downregulation of circadian clock genes induced a modification of the hMSCs cell cycle phase distribution, which was shown to be related to a change of the cyclin expression profile. Taken together, these data showed that CR plays a role in the regulation of hMSCs differentiation and division, and likely represent key factor in maintaining hMSCs properties.  相似文献   

8.
9.
Tremendous efforts have been made to elucidate the molecular mechanisms that control the specification of definitive endoderm cell fate in gene knockout mouse models and ES cell (ESC) differentiation models. However, the impact of the unfolded protein response (UPR), because of the stress of the endoplasmic reticulum on endodermal specification, is not well addressed. We employed UPR-inducing agents, thapsigargin and tunicamycin, in vitro to induce endodermal differentiation of mouse ESCs. Apart from the endodermal specification of ESCs, Western blotting demonstrated the enhanced phosphorylation of Smad2 and nuclear translocation of β-catenin in ESC-derived cells. The inclusion of the endoplasmic reticulum stress inhibitor tauroursodeoxycholic acid to the induction cultures prevented the differentiation of ESCs into definitive endodermal cells even when Activin A was supplemented. Also, the addition of the TGF-β inhibitor SB431542 and the Wnt/β-catenin antagonist IWP-2 negated the endodermal differentiation of ESCs mediated by thapsigargin and tunicamycin. These data suggest that the activation of the UPR appears to orchestrate the induction of the definitive endodermal cell fate of ESCs via both the Smad2 and β-catenin signaling pathways. The prospective regulatory machinery may be helpful for directing ESCs to differentiate into definitive endodermal cells for cellular therapy in the future.  相似文献   

10.

Background

The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors.

Results

Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation.

Conclusion

Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.  相似文献   

11.
Mourelatou M  Doonan JH  McCann MC 《Planta》2004,220(1):172-176
We have used the Zinnia elegans mesophyll cell system, in which single isolated leaf mesophyll cells can be induced to trans-differentiate into tracheary elements in vitro, to study the relationship between the cell division cycle and cell differentiation. Almost all cells go through several rounds of division before characteristic features of tracheary element formation are observed. The addition of aphidicolin, a DNA synthesis inhibitor, blocks cell division but not cell differentiation in the zinnia system. Low concentrations of aphidicolin, which possibly delay cells in the early S phase, can significantly enhance levels of tracheary element formation. In contrast, roscovitine, an inhibitor of cyclin-dependent kinase activity, decelerates the cell division cycle and inhibits tracheary element formation with similar dose responses. Cells blocked in S phase and then transferred to roscovitine-containing medium can divide once, indicating that roscovitine may target the G1/S transition, but do not differentiate. Cells inhibited in G1/S in roscovitine-containing medium that are subsequently blocked in S phase by transfer to aphidicolin-containing medium, do not divide but do differentiate. Taken together, our results indicate that cells may be required to transit the G1/S checkpoint and enter early S phase to acquire competence to trans-differentiate to tracheary elements.  相似文献   

12.
We have developed an image-based technique for signal pathway analysis, target validation, and compound screening related to mammary epithelial cell differentiation. This technique used the advantages of optical imaging and the HC11-Lux model system. The HC11-Lux cell line is a subclone of HC11 mammary epithelial cells transfected stably with a luciferase construct of the β-casein gene promoter (p-344/-1βc-Lux). The promoter activity was imaged optically in real time following lactogenic induction. The imaging signal intensity was closely correlated with that measured using a luminometer following protein extraction (R = 0.99, P < 0.0001) and consistent with the messenger RNA (mRNA) level of the endogenous β -casein gene. Using this technique, we examined the roles of JAK2/Stat5A, Raf-1/MEK/MAKP, and PI3K/Akt signal pathways with respect to differentiation. The imaging studies showed that treatment of the cells with epidermal growth factor (EGF), AG490 (JAK2-specific inhibitor), and LY294002 (PI3K-specific inhibitor) blocked lactogenic differentiation in a dose-dependent manner. PD98059 (MEK-specific inhibitor) could reverse EGF-mediated differentiation arrest. These results indicate that these pathways are essential in cell differentiation. This simple, sensitive, and reproducible technique permits visualization and real-time evaluation of the molecular events related to milk protein production. It can be adopted for high-throughput screening of small molecules for their effects on mammary epithelial cell growth, differentiation, and carcinogenesis.  相似文献   

13.
Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-β for early differentiation. To gain pathogenicity, however, Th17 cells require IL-1β and IL-23. The underlying mechanism by which these confer pathogenicity is not well understood. Here we show that Sprouty4, an inhibitor of the PLCγ-ERK pathway, critically regulates inflammatory Th17 (iTh17) cell differentiation. Sprouty4-deficient mice, as well as mice adoptively transferred with Sprouty4-deficient T cells, were resistant to experimental autoimmune encephalitis (EAE) and showed decreased Th17 cell generation in vivo. In vitro, Sprouty4 deficiency did not severely affect TGF-β/IL-6-induced Th17 cell generation but strongly impaired Th17 differentiation induced by IL-1/IL-6/IL-23. Analysis of Th17-related gene expression revealed that Sprouty4-deficient Th17 cells expressed lower levels of IL-1R1 and IL-23R, while RORγt levels were similar. Consistently, overexpression of Sprouty4 or pharmacological inhibition of ERK upregulated IL-1R1 expression in primary T cells. Thus, Sprouty4 and ERK play a critical role in developing iTh17 cells in Th17 cell-driven autoimmune diseases.  相似文献   

14.
Human embryonic stem cell differentiation towards various cell types belonging to ecto-, endo- and mesodermal cell lineages has been demonstrated, with high efficiency rates using standardized differentiation protocols. However, germ cell differentiation from human embryonic stem cells has been very inefficient so far. Even though the influence of various growth factors has been evaluated, the gene expression of different cell lines in relation to their differentiation potential has not yet been extensively examined. In this study, the potential of three male human embryonic stem cell lines to differentiate towards male gonadal cells was explored by analysing their gene expression profiles. The human embryonic stem cell lines were cultured for 14 days as monolayers on supporting human foreskin fibroblasts or as spheres in suspension, and were differentiated using BMP7, or spontaneous differentiation by omitting exogenous FGF2. TLDA analysis revealed that in the undifferentiated state, these cell lines have diverse mRNA profiles and exhibit significantly different potentials for differentiation towards the cell types present in the male gonads. This potential was associated with important factors directing the fate of the male primordial germ cells in vivo to form gonocytes, such as SOX17 or genes involved in the NODAL/ACTIVIN pathway, for example. Stimulation with BMP7 in suspension culture resulted in up-regulation of cytoplasmic SOX9 protein expression in all three lines. The observation that human embryonic stem cells differentiate towards germ and somatic cells after spontaneous and BMP7-induced stimulation in suspension emphasizes the important role of somatic cells in germ cell differentiation in vitro.  相似文献   

15.
16.
Differentiation of most cell types requires both establishment of G1 arrest and the induction of a program related to achieving quiescence. We have chosen to study the differentiation of oligodendrocyte cells to determine the role of p27 and p21 in this process. Here we report that both p27 and p21 are required for the appropriate differentiation of these cells. p27 is required for proper withdrawal from the cell cycle, p21 is not. Instead, p21 is required for the establishment of the differentiation program following growth arrest. Similar observations were made in vivo. We show that p21–/– cells withdraw from the cell cycle similar to wild-type cells; however, early in animal life, the brain is hypomyelinated, inferring that the loss of p21 delayed myelination in the cerebellum. We found that we could complement or bypass the differentiation failure in p21–/– cells with either PD98059, an inhibitor of Mek1, or by transducing them with a tat–p16Ink4a protein. We concluded that the two cdk inhibitors serve non-redundant roles in this program of differentiation, with p27 being responsible for arrest and p21 having a function in differentiation independent of its ability to control exit from the cell cycle.  相似文献   

17.
Previously, we have found that caspase-1 activity is increased during myoblast differentiation to myotubes. Here we show that caspase-1 activity is required for PC12 differentiation to neuronal-like cells. Caspase-1 is shown to be activated (by immunoblotting and by assessing activity in cell extracts) in the PC12 cells following the initial stage of differentiation. The inhibition of caspase-1 arrests PC12 cells at an intermediate stage of differentiation and prevents neurite outgrowth in these cells; the inhibition is reversed upon the removal of the inhibitor. Calpastatin (calpain endogenous specific inhibitor, and a known caspase substrate) is diminished at the later stages of PC12 cell differentiation, and diminution is prevented by caspase-1 inhibition. The degradation of fodrin (a known caspase and calpain substrate) is found in the advanced stage of differentiation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in two distinct differentiation processes (myoblast fusion and neuronal differentiation of PC12 cells) indicates a function for this caspase in differentiation processes, and suggests some common mechanisms underlying caspase roles in such processes.  相似文献   

18.
19.
Background aimsHeart failure therapy with human embryonic stem cell (hESC)-derived cardiomyocytes (hCM) has been limited by the low rate of spontaneous hCM differentiation. As others have shown that p38 mitogen-activated protein kinase (p38MAPK) directs neurogenesis from mouse embryonic stem cells, we investigated whether the p38MAPK inhibitor, SB203580, might influence hCM differentiation.MethodsWe treated differentiating hESC with SB203580 at specific time-points, and used flow cytometry, immunocytochemistry, quantitative real-time (RT)–polymerase chain reaction (PCR), teratoma formation and transmission electron microscopy to evaluate cardiomyocyte formation.ResultsWe observed that the addition of inhibitor resulted in 2.1-fold enrichment of spontaneously beating human embryoid bodies (hEB) at 21 days of differentiation, and that 25% of treated cells expressed cardiac-specific α-myosin heavy chain. This effect was dependent on the stage of differentiation at which the inhibitor was introduced. Immunostaining and teratoma formation assays demonstrated that the inhibitor did not affect hESC pluripotency; however, treated hESC gave rise to hCM exhibiting increased expression of sarcomeric proteins, including cardiac troponin T, myosin light chain and α-myosin heavy chain. This was consistent with significantly increased numbers of myofibrillar bundles and the appearance of nascent Z-bodies at earlier time-points in treated hCM. Treated hEB also demonstrated a normal karyotype by array comparative genomic hybridization and viability in vivo following injection into mouse myocardium.ConclusionsThese studies demonstrate that p38MAPK inhibition accelerates directed hCM differentiation from hESC, and that this effect is developmental stage-specific. The use of this inhibitor should improve our ability to generate hESC-derived hCM for cell-based therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号