首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charge-free hydrophobic gels of Hjerten et al. (Hjerten, S., Rosengren, J. and Pahlman, S. (1974) J. Chromatogr. 101, 281--288) were used for hydrophobic affinity chromatography. The effective hydrophobicity of proteins was expressed as their retention volumes from columns of butylepoxy- and hexylepoxy-Sepharose 4B. The effective hydrophobicity was also estimated by a partition method of Shanbhag and Axelsson ((1975) Eur. J. Biochem. 60, 17--22) from the partition coefficients of proteins between two phases, poly (ethylene glycol) and dextran. The former contained a hydrophobic ligand, palmitate. A close correlation was observed between the hydrophobicities determined by the two methods. However, no significant relationship was observed between these effective hydrophobicities and the average hydrophobicity of Bigelow ((1967) J. Theoret. Biol. 16, 187--211) that was calculated from the total amino acid composition of each protein. The interfacial tensions at the 0.2% protein/corn oil interface revealed negative correlations with the effective hydrophobicities determined by both methods indicating lower interfacial tensions with more hydrophobic proteins.  相似文献   

2.
Knowledge of host protein properties is critical for developing purification methods for recombinant proteins from a specific host, or for choosing suitable hosts and targeted expression tissues for a specific recombinant protein. A method to obtain a three-dimensional (3D) map (surface hydrophobicity (SH), isoelectric point (pI), and molecular weight (MW)), of a host's aqueous soluble protein properties was developed. The method consists of hydrophobic partitioning in a PEG 3350 (15.7%)-Na(2)SO(4) (8.9%)-NaCl (3%) aqueous two-phase (ATP) system followed by quantitative, 2D-electrophoretic characterization of the proteins of each equilibrium phase and the original extract. The pI and MW of host proteins were obtained directly through 2D electrophoresis. The partition coefficients of individual proteins were obtained by quantitative matching of protein spots in the top and bottom phase gels and calculating the protein partition coefficients from this information. Correlation of the partition coefficient to a SH scale was established by partitioning several model proteins with known surface hydrophobicities in the same ATP system. The inclusion of the extract gel provided for a spot selection criterion based on satisfactory mass balance closure. The method is illustrated by application to a mixture of model proteins and to complex mixtures, that is, corn germ proteins extracted at pH 7 and pH 4.  相似文献   

3.
Hydrophobicity of Bacillus and Clostridium spores.   总被引:3,自引:1,他引:2       下载免费PDF全文
The hydrophobicities of spores and vegetative cells of several species of the genera Bacillus and Clostridium were measured by using the bacterial adherence to hexadecane assay and hydrophobic interaction chromatography. Although spore hydrophobicity varied among species and strains, the spores of each organism were more hydrophobic than the vegetative cells. The relative hydrophobicities determined by the two methods generally agreed. Sporulation media and conditions appeared to have little effect on spore hydrophobicity. However, exposure of spore suspensions to heat treatment caused a considerable increase in spore hydrophobicity. The hydrophobic nature of Bacillus and Clostridium spores suggests that hydrophobic interactions may play a role in the adhesion of these spores to surfaces.  相似文献   

4.
The hydrophobicities of spores and vegetative cells of several species of the genera Bacillus and Clostridium were measured by using the bacterial adherence to hexadecane assay and hydrophobic interaction chromatography. Although spore hydrophobicity varied among species and strains, the spores of each organism were more hydrophobic than the vegetative cells. The relative hydrophobicities determined by the two methods generally agreed. Sporulation media and conditions appeared to have little effect on spore hydrophobicity. However, exposure of spore suspensions to heat treatment caused a considerable increase in spore hydrophobicity. The hydrophobic nature of Bacillus and Clostridium spores suggests that hydrophobic interactions may play a role in the adhesion of these spores to surfaces.  相似文献   

5.
Hydrophobic interactions are highly selective, and differences in surface hydrophobicities between proteins can be used as an efficient handle to facilitate protein isolation. Aromatic amino acid residues are of particular importance for molecular recognition because they have a key role in several biological functions. The hydrophobicity of a protein can easily be altered with minor genetic modifications, such as site-directed mutagenesis or fusions of hydrophobic peptide tags. An important advantage of hydrophobic peptide tags over traditional affinity tags is the possibility of exploring simple and inexpensive bioseparation materials. Recent results demonstrate the potential of hydrophobic interaction chromatography and aqueous two-phase systems as tools to study relative hydrophobicities of recombinant proteins with only minor alterations. This review focuses on hydrophobic peptide tags as fusion partners, which can be used as important tools in bioseparation.  相似文献   

6.
The cell surface hydrophobicities of a variety of aquatic and terrestrial gliding bacteria were measured by an assay of bacterial adherence to hydrocarbons (BATH), hydrophobic interaction chromatography, and the salt aggregation test. The bacteria demonstrated a broad range of hydrophobicities. Results among the three hydrophobicity assays performed on very hydrophilic strains were quite consistent. Bacterial adhesion to glass did not correlate with any particular measure of surface hydrophobicity. Several adhesion-defective mutants of Cytophaga sp. strain U67 were found to be more hydrophilic than the wild type, particularly by the BATH assay and hydrophobic interaction chromatography. The very limited adhesion of these mutants correlated well with hydrophilicity as determined by the BATH assay. The hydrophobicities of several adhesion-competent revertants ranged between those of the wild type and the mutants. As measured by the BATH assay, starvation increased hydrophobicity of both the wild type and an adhesion-defective mutant. During filament fragmentation of Flexibacter sp. strain FS-1, marked changes in hydrophobicity and adhesion were accompanied by changes in the arrays of surface-exposed proteins as detected by an immobilized radioiodination procedure.  相似文献   

7.
Summary The electrochemical effect of a charged dextran derivative and the hydrophobic effect of hydrophobic chain PEG derivative on partitioning of six types of proteins in PEG/dextran aqueous two-phase systems were investigated- When 1. 6%(w/w)DEAE-dextran was present in the system,the partition coefficient decreased quickly with increasing pH value;when 0. 4% (w/w)PEG pentadecanoic acid ester was present in the system, the partition coefficient of protein with strong hydrophobicity was greatly increased. The experimental results show that the influence of hydrocarbon chain PEG derivative on partition coefficient is closely related to the hydrophobicity of proteins.  相似文献   

8.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   

9.
The effect of protein concentration in partitioning in PEG/salt aqueous two-phase systems has been investigated. PEG 4000/phosphate systems in the presence of 0% w/w and 8.8% w/w NaCl have been evaluated using amyloglucosidase, subtilisin, and trypsin inhibitor. Also, a PEG 4000/phosphate system with 3% w/w NaCl was used for alpha-amylase. The concentration of the protein in each of the phases affected its partition behavior. The pattern for the individual proteins was dependent on their physicochemical properties. In the top phase, maximum protein concentration was determined mainly by a steric exclusion effect of PEG, and hydrophobic interaction between PEG and proteins. In the bottom phase, maximum concentration was determined mainly by a salting-out effect of the salts present. As the ionic strength was increased in the systems the concentration in the top phase increased for all proteins. In the bottom phase an increase in ionic strength increased the salting-out effect. Amyloglucosidase had a very low maximum concentration in the PEG-rich top phase which was probably due to its large size (steric exclusion) and low hydrophobicity, and a high concentration in the salt-rich bottom phase due to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor was lower than that of subtilisin which was probably due to its higher hydrophobicity and, hence, a stronger salting-out effect. The protein concentration in each of the two phases was correlated with a "saturation"-type equation. The partition coefficient could be satisfactorily predicted, as a function of the overall protein concentration, by the ratio between the "saturation" equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

11.
Hydrophobic interactions between nine model proteins and net-neutral lipid bilayer membranes (liposomes) under stress conditions were quantitatively examined by using immobilized liposome chromatography (ILC). Small or large unilamellar liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and immobilized in a gel matrix by utilizing covalent coupling between amino-containing lipids and activated gel beads or avidin–biotin biospecific binding. Retardation of bovine carbonic anhydrase (CAB) in ILC was pronounced at particular temperatures (50 and 60 °C) where the local hydrophobicity of theses protein molecules becomes sufficiently large. Protein-induced leakage of a hydrophilic dye (calcein) from immobilized liposomes interior was also drastically enhanced at particular temperatures where large retardation was observed. For other proteins examined, similar results were also observed. The specific capacity factor of the proteins characteristic for the ILC and the amount of calcein released from immobilized liposomes were successfully expressed as a function of the product of the local hydrophobicities of proteins and liposomes, regardless of protein species and the type of the stress conditions applied (denaturant and heating). These findings indicate that lipid membranes have an ability to non-specifically recognize local hydrophobicities of proteins to form stress-mediated supramolecular assemblies with proteins, which may have potential applications in bioprocesses such as protein refolding and separation. ILC was thus found to be a very useful method for the quantitative detection of dynamic protein–liposome interactions triggered by stress conditions.  相似文献   

12.
Summary Partition coefficients of distribution of proteins were measured in two systems: i) 3-phenoxy-2-hydroxypropyl derivatives of bead cellulose (PHPC)/water solution — coefficients P; and ii) Aqueous polyethylene glycol (PEG)/dextran (DXT) two-phase system — coefficient K. Following proteins were used for the measurements: lysozyme, trypsin, chymotrypsin, ovalbumin, bovine serum albumin and immunoglobulin G. The obtained P and K values were correlated with previous data about hydrophobicity of the above proteins available in the literature. The literary data concerned: i) the efficacy of energy transfer from tryptophan residues of proteins to cis-parinaric acid applied as hydrophobic probe, estimated by fluorescent spectroscopy; ii) the hydrophobic ratio indicating the ratio between the hydrophobic and hydrophilic parts (in volumes) of protein molecules deduced from their primary structure; and iii) the interfacial tension at 0.2% protein-water solution/corn oil interface. Significant corrlations were obtained for P and efficacy of energy transfer (r=0.964; p<0.01) and for K and interfacial tension (r=0.936; p<0.05). When P and K were fitted as exponential function of three independent variables (i.e., efficacy of energy transfer, hydrophobic ratio and interfacial tension) good agreement between the measured and computed data was obtained. The increases in efficacy of energy transfer, hydrophobic ratio and decrease in interfacial tension were found to be accompanied by increase in P. In contrary, K behaved always similarly as efficacy of energy transfer, hydrophobic ratio and interfacial tension.  相似文献   

13.
14.
The contact angle, which is generally used to evaluate the hydrophobicities of pure bacterial strains and solid surfaces, was used to study mixed cell cultures of bacteria involved in anaerobic digestion. Previously published data and data from this study showed that most acidogens are hydrophilic (contact angle, <45(deg)) but most of the acetogens and methanogens isolated from granular sludge are hydrophobic (contact angle, >45(deg)). The hydrophobicities of mixtures of hydrophilic and hydrophobic cells were found to be linearly correlated with the cell mixing ratio. The hydrophobicities of cells present in effluents from upflow anaerobic sludge bed reactors which were treating different types of substrates were different depending on the reactor conditions. When the reactor liquid had a high surface tension, cells sloughing off from sludge granules, as well as cells present on the outer surfaces of the granules, were hydrophobic. Short-term batch enrichment cultures revealed that proteins selected for highly hydrophilic cells. Long-term in-reactor enrichment cultures revealed that sugars selected for hydrophilic acidogens on the surfaces of the granules, while fatty acids tended to enrich for hydrophobic methanogens. When linear alkylbenzenesulfonate was added, the cells on the surfaces of granules became more hydrophilic. Control tests performed with pure cultures revealed that there was no change in the surface properties due to linear alkylbenzenesulfonate; hence, the changes in the wash-out observed probably reflect changes in the species composition of the microbial association. A surface layer with moderate hydrophobicity, a middle layer with extremely high hydrophobicity, and a core with high hydrophobicity could be distinguished in the grey granules which we studied.  相似文献   

15.
Colony formation is highly import ant for the competitive advantage of the cyanobacterium Microcystis over other phytoplankton species. The laboratory‐grown colonial Microcystis strains isolated from Lake Taihu (China) maintained colonial forms under the low light condition (10 μE m–2 s–1). The cell surface hydrophobicities of the Microcystis colonies were measured by cyanobacterial adherence to xylene in comparison with unicellular Microcystis strains. The cells of the tested colonial strains were all hydrophobic, while the cells of the tested unicellular strains were all hydrophilic. Incubation under the higher light condition (75 μE m–2 s–1) leaded to the significant decrease in the cell hydrophobicities of the colonial Microcystis and the transition from colonial forms to unicellular forms. These findings indicated that the cell hydrophobicity of Microcystis may play a role in cell‐cell adherence and colony formation. Phosphate‐limitation, nitrate‐limitation and pH did not affect cell hydrophobicities of colonial Microcystis. Treatment with proteolytic enzymes had no effect on the cell hydrophobicity, indicating that cell surface proteins did not contribute to high cell hydrophobicity. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
Partitioning of 15 proteins in polyethylene glycol (PEG)–sodium sulfate aqueous two-phase systems (ATPS) formed by PEG of two different molecular weights, PEG-600 and PEG-8000 in the presence of different buffers at pH 7.4 was studied. The effect of two salt additives (NaCl and NaSCN) on the protein partition behavior was examined. The salt effects on protein partitioning were analyzed by using the Collander solvent regression relationship between the proteins partition coefficients in ATPS with and without salt additives. The results obtained show that the concentration of buffer as well as the presence and concentration of salt additives affects the protein partition behavior. Analysis of ATPS in terms of the differences between the relative hydrophobicity and electrostatic properties of the phases does not explain the protein partition behavior. The differences between protein partitioning in PEG-600–salt and PEG-8000–salt ATPS cannot be explained by the protein size or polymer excluded volume effect. It is suggested that the protein–ion and protein–solvent interactions in the phases of ATPS are primarily important for protein partitioning.  相似文献   

18.
The probability of occurrence of helix and β-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor β-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor β-sheet formation with hydrophilic neighbors, but most of them strongly favor β-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and β-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for β-sheets. Therefore, β-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein–protein and protein–lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.  相似文献   

19.
Immobilization is widely used to isolate agglutinative and associative proteins with large hydrophobic surfaces. Surface hydrophobicities of immobilized proteins were quantified by measuring the adsorption amounts of Triton X-100 as a hydrophobic probe with a biosensor that utilizes the phenomena of surface plasmon resonance (SPR). We measured SPR signal changes derived from adsorption of Triton X-100 to five kinds proteins and calculated the monolayer adsorption capacity using the Brunauer-Emmett-Teller equation, partly modified with a term for correcting an influence of the net charge of immobilized protein. SPR signal changes obtained by this method correlated with the values of surface hydrophobicities obtained by conventional assay using a hydrophobic probe. Thus this measuring method using an SPR sensor and Triton X-100 is expected to be a tool for quantifying surface hydrophobicities of immobilized proteins.  相似文献   

20.
Di Cui  Shuching Ou  Sandeep Patel 《Proteins》2014,82(12):3312-3326
Hydrophobic effects, often conflated with hydrophobic forces, are implicated as major determinants in biological association and self‐assembly processes. Protein–protein interactions involved in signaling pathways in living systems are a prime example where hydrophobic effects have profound implications. In the context of protein–protein interactions, a priori knowledge of relevant binding interfaces (i.e., clusters of residues involved directly with binding interactions) is difficult. In the case of hydrophobically mediated interactions, use of hydropathy‐based methods relying on single residue hydrophobicity properties are routinely and widely used to predict propensities for such residues to be present in hydrophobic interfaces. However, recent studies suggest that consideration of hydrophobicity for single residues on a protein surface require accounting of the local environment dictated by neighboring residues and local water. In this study, we use a method derived from percolation theory to evaluate spanning water networks in the first hydration shells of a series of small proteins. We use residue‐based water density and single‐linkage clustering methods to predict hydrophobic regions of proteins; these regions are putatively involved in binding interactions. We find that this simple method is able to predict with sufficient accuracy and coverage the binding interface residues of a series of proteins. The approach is competitive with automated servers. The results of this study highlight the importance of accounting of local environment in determining the hydrophobic nature of individual residues on protein surfaces. Proteins 2014; 82:3312–3326. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号