首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The usual rise in phospholipid-bound palmitoleic acid of Tetrahymena pyriformis cells slowly acclimating to low temperature exposure can be prevented by cycloheximide. This reduction in fatty acid desaturation is not caused by specific inhibition of a temperature-induced synthesis of a fatty acid desaturase but rather by a general effect equally conspicuous in isothermal cells. Cycloheximide-inhibited cells chilled and analyzed quickly, before long term ill effects of the drug are expressed, exhibit the rise in unsaturated fatty acids typical of temperature-acclimating cells.  相似文献   

2.
A chloroplast-associated fatty acid synthetase system in Euglena   总被引:4,自引:0,他引:4  
Fatty acid synthetase activity in etiolated Euglena gracilis strain Z is independent of added ACP and associated with a high-molecular-weight complex of the type found in yeast. Cells grown in the dark and then greened by illumination in a resting medium develop a second enzyme system which is dependent on added ACP and generally resembles the corresponding E. coli and plant enzymes. Cycloheximide has no effect on the appearance of the ACP-dependent fatty acid synthetase in greening cells whereas chloramphenicol causes complete inhibition at concentrations which decrease chlorophyll synthesis by 66%. An induction of the ACP-dependent fatty acid synthetase in the absence of chloroplast development occurs on exposure of dark-grown cells to doses of ultraviolet light which selectively affect proplastid nucleoprotein. This enzyme induction by ultraviolet light is inhibited by chloramphenicol. The protein synthesis machinery of the chloroplast appears to be responsible, either directly or indirectly, for the appearance of the ACP-dependent fatty acid synthetase of Euglena.  相似文献   

3.
4.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

5.
The fatty acid profile of cells in culture are unlike those of natural cells with twice the monounsaturated (MUFA) and half the polyunsaturated fatty acids (PUFA) level (Mol%). This is not due to cell lines primarily being derived from cancers but is due to limited access to lipid and an inability to make PUFA de novo as vertebrate cells. Classic culture methods use media with 10% serum (the only exogenous source of lipid). Fetal bovine serum (FBS), the serum of choice has a low level of lipid and cholesterol compared to other sera and at 10% of media provides 2–3% of the fatty acid and cholesterol, 1% of the PUFA and 0.3% of the essential fatty acid linoleic acid (18:2n-6) available to cells in the body. Since vertebrate cell lines cannot make PUFA they synthesise MUFA, offsetting their PUFA deficit and reducing their fatty acid diversity. Stem and primary cells in culture appear to be similarly affected, with a rapid loss of their natural fatty acid compositions. The unnatural lipid composition of cells in culture has substantial implications for examining natural stems cell in culture, and for investigations of cellular mechanisms using cell lines based on the pervasive influence of fats.  相似文献   

6.
Microbial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE). We find that deletion of the aas gene and sequestering exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal lipid composition, and improves medium-chain fatty acid yields.  相似文献   

7.
The role of membrane lipid composition in determining the electrical properties of neuronal cells was investigated by altering the available fatty acids in the growth medium of cultured neuroblastoma X glioma hybrid cells, clone NG108-15. Growth of the cells for several days in the presence of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic) caused a pronounced decrease in the Na+ action-potential rate of rise (dV/dt) and smaller decreases in the amplitude, measured by intracellular recording. Oleic acid had no effect on the action potentials generated by the cells. In contrast, a saturated fatty acid (palmitate) and a trans monounsaturated fatty acid (elaidate) caused increases in both the rate of rise and the amplitude. No changes in the resting membrane potentials or Ca2+ action potentials of fatty acid-treated cells were observed. The membrane capacitance and time constant were not altered by exposure to arachidonate, oleate, or elaidate, whereas arachidonate caused a small increase in membrane resistance. Examination of the membrane phospholipid fatty acid composition of cells grown with various fatty acids revealed no consistent alterations which could explain these results. To examine the mechanism for arachidonate-induced decreases in dV/dt, the binding of 3H-saxitoxin (known to interact with voltage-sensitive Na+) channels was measured. Membranes from cells grown with arachidonate contained fewer saxitoxin binding sites, suggesting fewer Na+ channels in these cells. We conclude that conditions which lead to major changes in the membrane fatty acid composition have no effect on the resting membrane potential, membrane capacitance, time constant, or Ca2+ action potentials in NG108-15 cells. Membrane resistance also does not appear to be very sensitive to membrane fatty acid composition. However, changes in the availability of fatty acids and/or changes in the subsequent membrane fatty acid composition lead to altered Na+ action potentials. The primary mechanism for this alteration appears to be through changes in the number of Na+ channels in the cells.  相似文献   

8.
Mouse L-M fibroblasts, grown in a serum-free medium, were supplemented with fatty acids of 16 and 18 carbon chain lengths that contain a cyclopentene ring in the ω position. These fatty acids, unnatural to mammalian systems, were incorporated into the major lipid classes of L-M fibroblasts. Supplementation with the cyclopentenyl fatty acids caused an accumulation of neutral glycerolipids and marked inhibition of cell growth. Following the addition of supplement, the cells became more rounded. Of particular interest was the fact that the phospholipid fraction isolated from treated cells contained cyclic fatty acids that accounted for as much as 24% of the total phospholipid acyl groups. Unlike the pattern of distribution displayed by endogenous natural monoenes, the majority of the cyclic acid present was esterified in the sn-1 position of both phosphatidylcholine and phosphatidylethanolamine. The 18-carbon cyclic fatty acid [chaulmoogric acid, 13-(2-cyclopenten-1-yl)tridecanoic acid] was incorporated at the expense of the endogenous C-16:0, C-18:0, and C-18:1 fatty acids of the glycerophospholipids. The esterification altered the ratio of saturated to unsaturated acyl groups in the cellular phospholipids. No biochemical modification of chaulmoogric acid was detected.Our results imply that incorporation of unnatural fatty acid analogs, such as chaulmoogric acid, into cellular membranes would alter the functional properties of biological membranes that are dependent on membrane fluidity and structural organization.  相似文献   

9.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

10.
Two enzyme systems from Euglena gracilis var. bacillaris which catalyze the de novo biosynthesis of fatty acids have been compared. One is a multienzyme complex of high molecular weight which is independent of ACP for activity in vitro, and the other is an ACP-dependent system of discrete enzymes (M. L. Ernst-Fonberg, (1973) Biochemistry12, 2449–2455). The latter activity is present in small amounts in etiolated cells and increases upon exposure of dark-grown cells to light, while multienzyme complex fatty acid synthetase activity decreases by about one-half after 24 hr of exposure to light. Results from the greening of dark-grown cells in the presence of cycloheximide, chloramphenicol, or spectinomycin suggests that the chloroplast ribosomes are involved in the appearance of the ACP-dependent activity; alternatively, the cytoplasmic ribosomes appear to be the site of biosynthesis of the multienzyme complex fatty acid synthetase (or a protein responsible for its activation). The fatty acid synthetase activities from several chloroplast mutants were measured. The ACP-dependent activity was reduced or not present depending on the degree of impairment of chloroplast development, while the multienzyme complex activity in all instances continued to respond to light or darkness.Antibodies against the purified multienzyme complex extensively inhibited its activity whereas the activity of the ACP-dependent system was consistently stimulated. The two enzyme systems are immunologically cross reactive but not identical.  相似文献   

11.
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the “classic” cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

12.
Lymphosarcoma cells isolated from the spleens of tumor-bearing mice were used to study the effect of a low dose of X-rays (5 Gy) on the incorporation of [3H]palmitate and [14C]arachidonate into the lipids of the tumor cells. Palmitate and arachidonate were rapidly incorporated especially into the phospholipids of the cells. Between one and three hours after the start of the incubation with radiactive palmitate 80–90% of the label of the total lipids was found in the phospholipid fraction. Already after a few minutes of incubation with radioactive arachidonate, about 95% of the label was incorporated in the phospholipids. Irradiation caused a small but significant increase in the rate of fatty acid incorporation for both fatty acids. Concomitantly, a significantly increased amount of fatty acid was removed from the medium by the cells as a result of the irradiation, and the specific radioactivity of the free fatty acids in the cells was found to be enhanced. The radiation effect on the tumor cells could be mimicked by a hypotonic treatment. The magnitude of the radiation-induced stimulation of the fatty acid incorporation was similar to that of the hypotonically induced effect. Cells which had received a hypotonic treatment before the irradiation, did not show an additional radiation-induced enhancement of fatty acid incorporation into the cellular lipids. When the cells were incubated with serum albumin loaded with a relatively large (non-physiological) amount of complexed fatty acids (fatty acid: albumin molar ratio, ν = 3.7), no radiation effect on the fatty acid incorporation could be detected. It is concluded that hypotonic treatment, irradiation, and increased supply of exogenous fatty acids all lead to an enhanced flux of fatty acids into the cells. These results confirm our previous suggestion that the uptake of fatty acids through the plasma membrane is the rate-limiting step in the fatty acid incorporation into the phospholipids and that ionizing radiation is one of the means to enhance fatty acid uptake through the plasma membrane leading to an increased incorporation into the phospholipids.  相似文献   

13.
Fatty acid elongation was examined in the cellular slime mold, Dictyostelium discoideum. Profiling of the total fatty acid content of D. discoideum indicated that fatty acid elongation is active. Orthologs of the fatty acid elongase ELO family were identified in the D. discoideum genome and the cDNA for one, eloA, was cloned and functionally characterized by expression in yeast. EloA is a highly active ELO with strict substrate specificity for monounsaturated fatty acids, in particular 16:1Δ9 to produce the unusual 18:1Δ11 fatty acid. This is the first report on fatty acid elongation in a cellular slime mold.  相似文献   

14.
Quantitative fatty acid composition of microorganisms at various growth space points is required for understanding membrane associated processes of cells, but the majority of the relevant publications still restrict to the relative compositions. In the current study, a simple and reliable method for quantitative measurement of fatty acid content in bacterial biomass without prior derivatization using ultra performance liquid chromatography-electrospray ionization mass spectrometry was developed. The method was applied for investigating the influence of specific growth rate and pH on the fatty acid profiles of two biotechnologically important microorganisms — Gram-negative bacteria Escherichia coli and Gram-positive bacteria Lactococcus lactis grown in controlled physiological states. It was found that the membranes of slowly growing cells are more rigid and that the fatty acid fraction of the cells of L. lactis diminishes considerably with increasing growth rate.  相似文献   

15.
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.  相似文献   

16.
17.
The fatty acid composition of 35 strains of stalked bacteria belonging to 17 of the hitherto described 19 species and 10 unidentified strains of the genusCaulobacter was studied. ll-Methyl-cis-octadec-11-enoic acid presumably synthesized fromcis-vaccenic acid was detected in all the strains in amounts of 0.4 – 34.7 % and was considered as a chemotaxonomic marker of the genus. During growth on a peptone-yeast medium, the caulobacters synthesized, along with the fatty acids which are typical of gram-negative bacteria, some normal and branched fatty acids with 15 and 17 carbon atoms (1–49 %). The synthesis of these acids was inhibited by glucose. The cell shape of stalked bacteria (fusiform, vibrioid or bacteroid) is not obviously associated with the contents of individual fatty acids.  相似文献   

18.
The effects of changes in fatty acid composition of the cell membrane on different biological functions ofSalmonella typhimurium have been studied with the help of a temperature sensitive fatty acid auxotroph which cannot synthesise unsaturated fatty acids at high temperature. On being shifted to nonpermissive temperature the cells continue growing for another one and half to two generations. The rates of protein and DNA syntheses run parallel to the growth rate but the rate of RNA synthesis is reduced. Further, there is a gradual reduction in the rate of transport of exogenous uridine and thymidine into the soluble pool. The transport process can be restored by supplementing the growth medium with cis-unsaturated fatty acids but not trans-unsaturated ones although the growth of the cells is resumed by supplementation with eithercis or trans-unsaturated fatty acids. However, supplementation withtrans, trans-unsaturated fatty acids leads to only partial recovery of the transport process. The rate of oxygen uptake is also affected in cells grown in the presence of thetrans-unsaturated fatty acids, elaidic acid and palmitelaidic acid. Analysis of cells grown under different fatty acid supplementation indicate that fatty acid composition of the cell membrane, especially the ratio of unsaturated to saturated fatty acids varies with temperature shift and supplementation of the growth media with fatty acids.  相似文献   

19.
The toxicity of inorganic metal species towards Saccharomyces cerevisiae has been shown to be markedly dependent on cellular fatty acid composition. In this investigation, the influence of fatty acid supplementation on the toxicity of the lipophilic organometal, tributyltin was investigated. Growth of S. cerevisiae was increasingly inhibited when the tributyltin concentration was increased from 0 to 10 μM. However, the inhibitory effect was partly alleviated by supplementation of the medium with 1 mM linoleate (18:2), a treatment that leads to large-scale incorporation of this polyunsaturated fatty acid (to >60% of total fatty acids) in yeast membrane lipids. Cells that were previously enriched with 18:2 also showed reduced loss of vitality compared to cells grown in the absence of a fatty acid supplement, when exposed to tributyltin. For example, addition of tributyltin to a concentration of 0.1 μM was associated with an approximate 10% reduction in the H+ efflux activity of 18:2-enriched cells, but a 70% reduction in that of fatty acid-unsupplemented cells. Despite the increased tributyltin resistance of 18:2-enriched S. cerevisiae, the level of cell-associated tributyltin was found to be approximately two-fold higher in these organisms than in fatty acid-unsupplemented cells. These results demonstrate an increased resistance of 18:2-enriched membranes to the direct toxic action(s) of tributyltin. This is in contrast to the previously reported effect of 18:2 enrichment on sensitivity of S. cerevisiae to inorganic metal cations.  相似文献   

20.
A nutrient associated with animal-derived phospholipids has previously been found essential for newly-emerged adults of the mosquito Culex pipiens to fly and survive more than a few days. Pure arachidonic acid was completely effective in supporting the emergence of viable flying adults; in combination with synthetic dipalmitoyl lecithin, which slightly improves larval growth rate without inducing adult flight, it wholly adequately replaces animal phospholipids. Linoleic and linolenic acids, which have satisfied the needs of all insects hitherto shown to require an essential fatty acid, were ineffective for C. pipiens, with or without synthetic lecithin. An optimal effect on adult flight was obtained with 0.05 mg of arachidonic acid per 100 ml of dietary medium, a concentration much lower than the linoleic/linolenic concentrations needed by other insects with an essential fatty acid requirement. The relationship of this unique mosquito fatty acid requirement to the essential fatty acid needs of both vertebrates and insects in general is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号