首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoprotein lipase regulates the hydrolysis of circulating triglyceride and the uptake of fatty acids by most tissues, including the mammary gland and adipose tissue. Thus, lipoprotein lipase is critical for the uptake and secretion of the long-chain fatty acids in milk and for the assimilation of a high-fat milk diet by suckling young. In the lactating female, lipoprotein lipase appears to be regulated such that levels in adipose tissue are almost completely depressed while those in the mammary gland are high. Thus, circulating fatty acids are directed to the mammary gland for milk fat production. Phocid seals serve as excellent models in the study of lipoprotein lipase and fat transfer during lactation because mothers may fast completely while secreting large quantities of high fat milks and pups deposit large amounts of fat as blubber. We measured pup body composition and milk fat intake by isotope (deuterium oxide) dilution and plasma post-heparin lipoprotein lipase activity in six grey seal (Halichoerus grypus) mother-pup pairs at birth and again late in the 16-day laction period. Maternal post-heparin lipoprotein lipase activity increased by an average of four-fold by late lactation (P=0.027), which paralleled an increase in milk fat concentration (from 38 to 56%; P=0.043). Increasing lipoprotein lipase activity was correlated with increasing milk fat output (1.3–2.1 kg fat per day) over lactation (P=0.019). Maternal plasma triglyceride (during fasting) was inversely correlated to lipoprotein lipase activity (P=0.027) and may be associated with the direct incorporation of longchain fatty acids from blubber into milk. In pups, post-heparin lipoprotein lipase activity was already high at birth and increased as total body fat content (P=0.028) and the ratio of body fat: protein incrased (P=0.036) during lactation. Although pup plasma triglyceride increased with increasing daily milk fat intake (P=0.023), pups effectively cleared lipid from the circulation and deposited 70% of milk fat consumed throughout lactation. Lipoprotein lipase may play an important role in the mechanisms involved with the extraordinary rates of fat transfer in phocid seals.Abbreviations FFA free fatty acid - HL hepatic lipase - LPL lipoprotein lipase - PH-HL post-heparin hepatic lipase - PH-LPL post-heparin lipoprotein lipase - VLDL very low density lipoprotein  相似文献   

2.
Forty each of aspergilli and penicillia were screened for extracellular lipase production on agar plates and in liquid medium containing olive oil as substrate. Twenty-nine aspergilli and twenty-six penicillia produced lipase. Out of these, 19 aspergilli and 22 penicillia showed activity both on Nile blue sulfate and glycerol tributyrate agar plates while only 10 aspergilli and 4 penicillia showed a positive response to glycerol tributyrate agar alone. The screening revealed 11Aspergillus spp. and 15Penicillium spp. as new lipase producers. Pig fat as an economic substrate for lipase production was also investigated.  相似文献   

3.
A lipase-producing bacterium, Acinetobacter calcoacetius LP009, was isolated from raw milk. The optimum conditions for growth and lipase production by A. calcoaceticus LP009 were 15 degrees C with shaking at 200 rpm in LB supplemented with 1.0% (v/v) Tween 80. The crude lipase was purified to homogeneous state by ultrafiltration and gel filtration chromatography on Sephadex G-100. Its molecular weight determined by SDS-PAGE was 23 kDa and it exhibited maximum activity at pH 7.0 and 50 degrees C. It was stable over the pH range of 4.0 to 8.0 and at temperatures lower than 45 degrees C. It was a metalloenzyme that is positionally non-specific and had the ability to improve fat hydrolysis in soybean meal and in premixed animals feed.  相似文献   

4.
Growth inhibition of Clostridium butyricum VPI 3266 by raw glycerol, obtained from the biodiesel production process, was evaluated. C. butyricum presents the same tolerance to raw and to commercial glycerol, when both are of similar grade, i.e. above 87% (w/v). A 39% increase of growth inhibition was observed in the presence of 100 g l–1 of a lower grade raw glycerol (65% w/v). Furthermore, 1,3-propanediol production from two raw glycerol types (65% w/v and 92% w/v), without any prior purification, was observed in batch and continuous cultures, on a synthetic medium. No significant differences were found in C. butyricum fermentation patterns on raw and commercial glycerol as the sole carbon source. In every case, 1,3-propanediol yield was around 0.60 mol/mol glycerol consumed.  相似文献   

5.
Twelve multiparous Holstein cows at 72 ± 20 days in milk were used in a switch-back design with 14-d periods to determine the effect of replacing barley grain into a dairy total mixed ration with micronized or raw flaxseed on nutrient digestibility, milk yield, milk composition. Total mixed diets were (DM basis) 50% barley silage, 50% concentrate mix mainly rolled barley grain and canola meal. Diets were supplemented with 1 kg raw (RF) or micronized (MF) flaxseed to substitute 1 kg of rolled barley grain (C). Neutral detergent fibre, ADF and CP digestibility of the diets were not significantly affected by supplementation; however, calcium digestibility was reduced by 62% and 46% when raw and micronized flax were fed, respectively. Milk yield (38.3, 39.6, and 38.4 kg/d for diets C, RF and MF, respectively) was similar for all diets. Milk fat (3.50, 3.48, and 3.52%) and protein (3.31, 3.34, and 3.31%) for diets C, RF and MF, respectively, were not affected by treatment diets. Concentrations of c9, t11 conjugated linoleic acid (CLA; 0.51, 0.72 and 0.76 g/100 g fatty acids) in milk fat increased (P < 0.05) similarly among the two flaxseed supplemented diets. The RF and MF diets significantly increased the C18:1, C18:1 trans-11, C18:2 cis-9, cis-12 and C18:3 in milk fat however, C12:0, C14:0 and C16:0 were significantly reduced compared with control. Replacing barley grain with flaxseed in the diet of lactating cows increased the beneficial fatty acids in milk without depressing nutrient digestibility. Micronization of flaxseed did not reveal any advantage over raw flaxseed.  相似文献   

6.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

7.
The effect of different culture conditions on thermostable lipase production byBacillus sp. was studied in shake flasks. A maximum enzyme activity of 67–75 nkat/mL was observed in a medium consisting of 0.5% soybean flour and 0.1% stearyl glycerol esters or natural fats. A lipase activity of about 117 nkat/mL was established when the cultivation was carried out in laboratory fermentor at 20% minimal dissolved oxygen level, the enzyme production being increased 1.5 fold compared to that in a flask culture.  相似文献   

8.
Structured triacylglycerols resembling human milk fat, that contain palmitoyl (16:0) moieties predominantly at the sn-2- position of the glycerol backbone and oleoyl (18:1) and linoleoyl (18:2) moieties at the sn-1,3-positions, have been prepared by regiospecific transesterification of tripalmitin with fatty acids of low-erucic rapeseed oil using a plant lipase – papaya latex – and for comparison Lipozyme, as biocatalyst. © Rapid Science Ltd. 1998  相似文献   

9.
Background: The interest in non‐antibiotic therapies for Helicobacter pylori infections in man has considerably grown because increasing numbers of antibiotic‐resistant strains are being reported. Intervention at the stage of bacterial attachment to the gastric mucosa could be an approach to improve the control/eradication rate of this infection. Materials and Methods: Fractions of purified milk fat globule membrane glycoproteins were tested in vitro for their cytotoxic and direct antibacterial effect. The anti‐adhesive effect on H. pylori was determined first in a cell model using the mucus‐producing gastric epithelial cell line NCI‐N87 and next in the C57BL/6 mouse model after dosing at 400 mg/kg protein once or twice daily from day ?2 to day 4 post‐infection. Bacterial loads were determined by using quantitative real‐time PCR and the standard plate count method. Results: The milk fat globule membrane fractions did not show in vitro cytotoxicity, and a marginal antibacterial effect was demonstrated for defatted milk fat globule membrane at 256 μg/mL. In the anti‐adhesion assay, the results varied from 56.0 ± 5.3% inhibition for 0.3% crude milk fat globule membrane to 79.3 ± 3.5% for defatted milk fat globule membrane. Quite surprisingly, in vivo administration of the same milk fat globule membrane fractions did not confirm the anti‐adhesive effects and even caused an increase in bacterial load in the stomach. Conclusions: The promising anti‐adhesion in vitro results could not be confirmed in the mouse model, even after the highest attainable exposure. It is concluded that raw or defatted milk fat globule membrane fractions do not have any prophylactic or therapeutic potential against Helicobacter infection.  相似文献   

10.
Summary In a study of lipase production byCandida rugosa growing on olive oil, the relationship between the consumption of substrate and lipase production is presented. Two stages could be observed in the consumption of the olive oil: a first one, related with the glycerol depletion without lipase production, and a second one, associated with the fatty acids consumption when the enzyme appears in the medium.  相似文献   

11.
Intragastric lipolysis may be particularly important for the digestion of milk lipid since milk fat globules are resistant to pancreatic lipase without prior disruption; milk bile salt stimulated lipase (BSSL) may supplement further intestinal hydrolysis. Previous information on gastric lipolysis has been based primarily on in vitro studies using artificial lipid emulsions containing a single component fatty acid and have focused on the preferential release of medium-chain fatty acids. The actual contribution of these enzymes to overall fat digestion in vivo on natural substrates has rarely been studied, however. The neonatal dog is an excellent model in the study of lipid digestion because, like the human, milk lipids are high in long-chain unsaturated fatty acids, milk contains BSSL and gastric lipase is the predominant lipolytic enzyme acting in the stomach. We used a combination of in vivo studies with in vitro incubations to investigate digestion of milk lipid by gastric and milk (BSSL) lipases in the suckling dog. In the first 4 weeks postpartum, 14-41% and 42-60% of milk triacylglycerol was hydrolyzed to primarily diacylglycerol and free fatty acid (FFA) in the first 30 and 60 min in the stomach, respectively. Milk lipid contained high levels (63%) of long-chain unsaturated fatty acids, which were preferentially released as FFA during in vivo gastric lipolysis, consistent with the actions and stereospecificity of gastric lipase. While levels of hydrolysis in gastric aspirates were significantly different (by age and time in stomach) at the start of in vitro studies, total hydrolysis in all incubation systems plateaued at about 65%, suggesting product inhibition by the long-chain FFA, but to a much lesser degree than previously expected from in vitro studies. The magnitude of in vivo intragastric lipolysis was 3- to 6-times greater than that predicted by in vitro assays using either milk lipid or labeled emulsion as substrate, respectively. Prior exposure to intragastric lipolysis resulted in 30% hydrolysis by BSSL compared to 5% hydrolysis without prior exposure. We suggest that previous in vitro studies have largely underestimated the actual degree of intragastric lipolysis that can occur and its activity on long-chain fatty acids; this study indicates the importance of the combined mechanisms of gastric lipase and BSSL to fat digestion in the suckling neonate.  相似文献   

12.
Abstract

A lipase-producing bacterium isolated from raw milk was identified as Serratia grimesii based on 16S rRNA sequence analysis. The extracellular lipase was partially purified by ammonium sulfate precipitation and ultrafiltration. Maximal activity was observed at 10°C, the optimum pH was 8.0 and the enzyme was stable at 5–30°C for 1 h. The Km and Vmax values were 1.7 mM and 0.3 mM/min respectively. It was found that the lipase had the highest hydrolytic activity towards sunflower oil and soybean oil. CaCl2 had a stimulatory effect on lipase activity, while EDTA and iodoacetic acid slightly inhibited the lipase activity and the enzyme was strongly inhibited by PMSF. The enzyme was compatible with various non-ionic surfactants as well as sodium cholate and saponin. In addition, the enzyme was relatively stable towards oxidizing agents. This lipase exhibited maximum activity in 35% n-hexane retaining about 2191% activity for 1 h.  相似文献   

13.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

14.
Summary The production ofPseudomonas aeruginosa MB 5001 extracellular lipase was optimized by batch cultivation employing shake flasks and 23-L bioreactors. This enzyme efficiently and selectively bioconverts dimethyl 5-(3-(2-(7-chloroquinolin-2-yl)ethyl)phenyl)4,6-dithianonanedioate (diester) to its (S)-ester acid. Process development studies focused on the identification and optimization of the physicochemical parameters required to achieve maximum lipase production. Of the media evaluated, a peptonized milk-based medium was found to support excellent lipase production and stability. Medium composition and process parameters that supported optimal lipase production were different from those supporting maximum biomass formation. Of the parameters investigated, dissolved oxygen tension had the most significant and unexpected impact on lipase production. Elevated lipase production was achieved whenP. aeruginosa MB 5001 was cultivated in a dissolved oxygen limited environment. Overall, these process development studies resulted in a 100% increase in lipase production when compared to the original shake flask process employing skim milk.  相似文献   

15.
Recently, a new genotype of oat (cv. CDC SO-I, containing low-hull lignin and high-fat groat), has been developed. The objective of this study was to determine the effects of partially replacing barley and corn with the new oat and its micronisation on lactating performance of dairy cows. In a double 4 × 4 Latin square design, eight lactating dairy cows (732 ± 46 kg body weight [BW]; parity 4 ± 2) received total mixed rations with a forage-to-concentrate ratio of 50:50 (DM basis). The four treatments were: T1, barley only (control); T2, raw oat, replacing 42% barley of T1; T3, micronised oat, replacing 42% barley of T1; and T4, raw oat and corn blend, replacing 100% barley of T1. The results showed that dairy cows fed the new oats (T2, T3) produced more fat (p < 0.05) and more fat corrected milk (p < 0.10) than cows fed barley only (T1). The performance of cows fed the new oat and corn blend (T4) was not significantly different from other treatments. The micronisation significantly reduced protein degradability (74 vs. 63%, p < 0.05), but increased starch degradability (87 vs. 93%, p < 0.05) of the new oat. However, the overall results suggested that micronisation did not show a significant impact on milk production. The newly developed CDC SO-I oat can replace 42% barley (in T1) as a concentrate supplement in dairy total mixed rations with an increased yield of milk fat and fat corrected milk.  相似文献   

16.
Prolonged cold storage of raw milks favors the growth of psychrotrophs, which produce heat-resistant exoenzymes of considerable spoilage potential; the bacterial proteases and lipases affect raw milk quality; among them phospholipases (PLs) may target the milk fat globule. More importantly, bacterial PLs are key virulence factors for numerous species. Two studies examined the use of nitrogen (N(2)) gas and examined its effect on psychrotrophs, proteases and lipase producers when the milk was stored in closed vessels; however, the effect on PLs producers is unknown. Here we show that by considering an open system the PLs producers were sooner or later excluded in raw milk (whereas the PLs producers in the non-treated controls culminated at 10(8)CFU/ml), by effective gas treatments that bring oxygen (O(2)) levels in milk lower than 0.1ppm. No increase of the PLs producers among the anaerobes was noticed during the course of the experiments. In the experiments performed at 6.0 degrees C, the delay after which the PLs producers were no longer detectable seemed independent of the initial level of PLs producers in raw milk (lower than 10(3)CFU/ml). We anticipate that flushing pure N(2) gas in raw milk tanks, considered as open systems, along the cold chain of raw milk storage and transportation, may be an additional technique to control psychrotrophs, and may also constitute an interesting perspective for limiting their spoilage and pathogenic potential in food materials in general.  相似文献   

17.
The conservation of food products within a controlled atmosphere is efficient in packaging. To extend the cold storage of raw milk, the effects of five gas atmospheres enriched with carbon dioxide and nitrogen were investigated. Treated and control milk were stored at 7 °C for 10 days and analyzed for microbial counts, pH, proteolysis and lipolysis. The addition of CO2, N2, or their mixture had a significant inhibitory effect on psychrotrophic growth. The generation times of these microorganisms were significantly longer in treated milk, particularly for yeasts where they amounted to 16.63 h. The maximum inhibition was observed when a gas mixture of 50 % CO2 and 50 % N2 was used. As a result, psychrotrophic growth was affected to 98 % whereas this inhibition did not exceed 78 % when CO2 and 41 % N2 were applied. Milk treatment under the conditions of 50 % CO2 and 50 % N2 gave significantly lower counts for all groups of psychrotrophs being more efficient against Enterobacteriaceae with 99.5 % of inhibition. Storage of raw milk under the tested atmospheres had a different effect on extracellular enzyme productions. Significant decreases in protease and lipase activities were observed during the storage at 7 °C. These enzyme activities were not detectable with pure CO2 and a 50 % CO2 and 50 % N2 mixture. N2 has shown to be the less efficient treatment against lipases (65 %) and proteases (95 %). With regard to growth, the course of the pH and the protease and lipase activities, the tested gas mixture of 50 % CO2 and 50 % N2 was more suitable for extending the shelf life of raw milk.  相似文献   

18.
The effect of heat treatment and commercial starter culture utilization on the physicochemical and microbiological properties of Kulek cheese made from raw milk with or without starter culture and heated milk with starter culture were investigated during ripening. Titratable acidity (TA) was the highest in cheeses made from heated milk while total solids (TS), salt, and fat were the highest in cheeses made from raw milk. The heat treatment significantly decreased the counts of coliforms and Enterobacteriaceae in cheeses. At the beginning of the ripening period, cheeses manufactured from heated milk with starter exhibited significantly higher counts of lactococci and proteolytic organisms and lower counts of lactobacilli than the other cheeses. After the first day, raw milk cheeses without starter showed higher microbiological counts than the others. In fresh cheeses, Lactococcus was the main lactic acid bacterium, with Lc. lactis lactis being predominant. Lactobacillus plantarum and Lactobacillus paracasei paracasei dominated at the later stages of the ripening.  相似文献   

19.
A lipase from a newly isolated thermophilicRhizopus rhizopodiformis   总被引:1,自引:0,他引:1  
Two strains ofRhizopus rhizopodiformis that produced lipases in broth culture were isolated. Maximum lipase production (23 U/ml) was obtained after 72 h culture. Both the crude lipases were stable at 50°C for 30 min and at 45°C for 24 h. Maltose was the best carbon source and peptone the best nitrogen source for the production of lipases. Only glycerol and lecithin stimulated lipase production further.  相似文献   

20.
Rhizopus lipases have been successfully expressed in Pichia pastors and different fermentation strategies have been investigated. However, there is no sufficient study on the effects of methanol concentration on the production of Rhizopus lipases in P. pastors. In this study, the lipase from Rhizopus chinensis CCTCC M20102 was expressed under different fed-batch fermentation conditions at methanol concentrations ranging from 0.5 to 3.5 g/L. The lipase activity, stability, and productivities were analyzed. The optimum methanol concentration was 1 g/L, with the highest lipase activity of 2,130 U/mL, without degradation. Additional information was obtained from the analysis of methanol consumption and production rates. The results also suggested that the cell concentration at the end of the glycerol fed-batch phase was very important for cell viability and protease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号