首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:4,自引:0,他引:4  
The mobility of Cd in potato plants (Solanum tuberosum) was examined using both short‐term radioisotopic labelling with 109Cd and long‐term growth experiments in soil supplemented with Cd, with an emphasis on the pathways through which Cd is taken up by tubers. Split‐pot experiments showed that tubers and their associated stolons and stolon roots contribute only a minor fraction to the overall Cd absorption by the plant. Most of the Cd was absorbed by the basal roots. 109Cd absorbed from the soil was rapidly exported to other parts of the plant, especially the stem, with significant amounts appearing in the tubers within 30 h. Application of 109Cd to leaves showed that Cd can be rapidly distributed via the phloem to all tissues. The results suggest that unlike Ca, Cd has high mobility in plants in both xylem and phloem, and that stems may have an important role in transfer between these two pathways.  相似文献   

2.
植物体内水分长距离运输的生理生态学机制   总被引:8,自引:0,他引:8       下载免费PDF全文
植物体内长距离水分运输是植物生理生态学研究中的一个重要问题,长期为植物生理学家和生理生态学家所关注。木质部探针技术的问世,掀起了近年来植物生理学界最为激烈的一场争论。提出了已经有100多年,风行40年的内聚力-张力(Cohesion-Tension, C-T)学说受到质疑。随后维护派和质疑派围绕木质部探针技术、压力室技术(C-T理论的主要支撑实验技术)的可靠性展开辩论。进一步从物理学原理和各种实验上就C-T理论的3个支柱(木质部导管或管胞中巨大的张力、沿树高的压力梯度、连续水柱)进行争论。这场争论似暂告一段落,C-T理论没有被推翻,但仍留有问题期待以后的研究。  相似文献   

3.
The influence of Fe nutrition on the distribution of the heavy metals Fe, Mn, Zn, and Cu and of the heavy metal chelators nicotianamine (NA) and citrate in 6 different shoot and 3 different root parts and in xylem exudate of a NA-containing tomato wild type and its NA-less mutant was investigated. Under the same Fe supply the mutant showed higher Fe, Mn, and Zn concentrations in all organs investigated, with exception of the shoot apex. The Cu concentration in the mutant was only in root parts higher than in the wild type but much lower in leaves. Analyses of xylem exudate showed that Fe, Mn, and Zn were readily translocated by both genotypes from the roots to the shoot at all levels of Fe supply, whereas in the absence of NA, Cu was only poorly transported. Citrate as main Fe chelator in the xylem was present in high concentrations in xylem exudate of the wild type under low Fe supply but in the mutant also at 10 M FeEDTA. NA occurred in xylem exudate of the wild type in concentrations high enough to chelate heavy metal ions.Generally, high Fe supply induced a decrease of Mn, Cu, and Zn concentrations in all organs of the wild type whereas high concentrations were observed in most cases under Fe deficiency. A positive correlation between Fe supply and NA concentration existed only in the shoot apex and in the xylem exudate of wild type plants. From the correlation between Cu and NA translocation and from the high stability constant of the NA-Cu-complex (log K=18.6) it is concluded that NA is a chelator for Cu in the xylem, whereas the translocation of Fe, Mn, and Zn is independent of NA.  相似文献   

4.
The Cohesion-Tension Theory   总被引:2,自引:0,他引:2  
《The New phytologist》2004,163(3):451-452
  相似文献   

5.
6.
7.
The translocation of manganese (Mn), nickel (Ni), cobalt (Co), zinc (Zn) and cadmium (Cd) in white lupin (Lupinus albus cv. Amiga) was compared considering root-to-shoot transport, and redistribution in the root system and in the shoot, as well as the content at different stages of cluster roots and in other roots. To investigate the redistribution of these heavy metals, lupin plants were labelled via the root for 24 h with radionuclides and subsequently grown hydroponically for several weeks. 54Mn, 63Ni and 65Zn were transported via the xylem to the shoot. 63Ni and 65Zn were redistributed afterwards via the phloem from older to younger leaves, while 54Mn remained in the oldest leaves. A strong retention in the root was observed for 57Co and 109Cd. Cluster roots contained higher concentrations of all heavy metals than noncluster roots. Concentrations were generally higher at the beginning of cluster root development (juvenile and immature stages). Mature cluster roots also contained high levels of 54Mn and 57Co, but only reduced concentrations of 63Ni, 65Zn and 109Cd.  相似文献   

8.
Interactions of bacteria with cadmium   总被引:2,自引:0,他引:2  
Cadmium pollution arises mainly from contamination of minerals used in agriculture and from industrial processes. The usual situation is of large volumes of soil and water that are contaminated with low — but significant — concentrations of cadmium. Therefore, detoxification of the polluted water and soil involves the concentration of the metal, or binding it in a way that makes it biologically inert.Cadmium is one of the more toxic metals, that is also carcinogenic and teratogenic. Its effects are short term, even acute (diseases like Itai-itai), or long term. The long term effects are intensified due to the fact that cadmium accumulates in the body.This paper describes a study involving several hundred cadmium-resistant bacterial isolates. These bacteria could be divided into three groups—the largest group consisted of bacteria resistant to cadmium by effluxing it from the cells. The bacteria of the other two groups were capable of binding cadmium or of detoxifying it. We concentrated on one strain that could bind cadmium very efficiently, depending on the bacterial biomass and on the pH. This strain could effectively remove cadmium from contaminated water and soil.  相似文献   

9.
A pot experiment was conducted to investigate the effect of iron plaque on Pb uptake by and translocation in Carex cinerascens Kukenth. grown under open-air conditions. Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry, iron plaque was present as an amorphous coating on root surfaces with uneven distribution. The amount of iron plaque increased significantly with increasing Fe additions regardless of Pb additions. The presence of iron plaque on the root surface of Carex cinerascens Kukenth. increased the concentrations of Pb adsorbed by iron plaque. The Pb percentage in whole roots increased by 14.52% at 500 mg kg?1 Fe treatment than at 0 mg kg?1 Fe, and the distribution coefficient (DC) of Pb and translocation factor (TF) root increased with Fe additions, but translocation factor (TF) shoot decreased with Fe additions. The results suggested that iron plaque could promote the translocation of Pb from soil to roots to some extent, and it played a role to reduce heavy metals pollution of Poyang Lake wetland.  相似文献   

10.
* In this study we address the impact of changes in plant heavy metal, (i.e. zinc (Zn) and cadmium (Cd)) status on metal accumulation in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. * Thlaspi caerulescens plants were grown hydroponically on both high and low Zn and Cd regimes and whole-shoot and -root metal accumulation, and root (109)Cd(2+) influx were determined. * High-Zn-grown (500 microm Zn) plants were found to be more Cd-tolerant than plants grown in standard Zn conditions (1 microm Zn). Furthermore, shoot Cd accumulation was significantly greater in the high-Zn-grown plants. A positive correlation was also found between shoot Zn accumulation and increased plant Cd status. Radiotracer (109)Cd root flux experiments demonstrated that high-Zn-grown plants maintained significantly higher root Cd(2+) influx than plants grown on 1 microm Zn. It was also found that both nickel (Ni) and copper (Cu) shoot accumulation were stimulated by high plant Zn status, while manganese (Mn) accumulation was not affected. * A speculative model is presented to explain these findings, suggesting that xylem loading may be one of the key sites responsible for the hyperaccumulation of Zn and Cd accumulation in Thlaspi caerulescens.  相似文献   

11.
12.
The review considers the roles of root and shoot tissues in transport and accumulation of heavy metals in plants of two contrast groups, i.e., excluders and hyperaccumulators. The regularities in distribution of cadmium, lead, nickel, and strontium are summarized. Effects of other cations, calcium in particular, on accumulation and distribution of heavy metals are analyzed. Specific patterns of metal distribution in hyperaccumulator plants are discussed together with morphological and functional features underlying the ability of plants to accumulate heavy metals in the aboveground organs. Based on the data available, the root and shoot tissues are classified according to their roles in transport and distribution of the metals examined.  相似文献   

13.
Zinc (Zn) is an essential micronutrient for all living organisms. Plants serve as a major entry point for this element into the food chain. Zn deficiency has become a widespread nutritional condition, which mirror the inadequate Zn reserves in significant proportion of the earth's arable land. A recent assessment by the World Health Organization revealed that one third of the world's population is at risk of Zn deficiency. To counter this alarming situation, substantial efforts have been made to increase Zn content and availability in staple crops and grains. Nevertheless, the absence of fundamental information has held back progress in this field. Developing a better understanding of how Zn homeostasis is regulated in plants, such as Zn transporters at loading bottlenecks, is of primary interest to biofortification and phytoremediation programs. Many reviews have been published on this subject, and here we briefly summarize the regulation of one limiting step in Zn distribution within plants — the loading of Zn into root xylem.  相似文献   

14.
    
Putrescine uptake and translocation were studied by feeding [3H] putrescine to roots of tomato seedlings ( Lycopersicon esculentum Miller, cv. Earlypak 7) at the stage of expanded cotyledons, of maize seedlings ( Zea mais L.) at the coleoptile stage, and of one year old pines ( Pinus pinea L.). Putrescine translocation was rapid as radioactivity appeared in the upper part of the seedlings within 30 min, continuing to increase up to 24 h, while it decreased in roots. The putrescine supplied was partly metabolized to spermidine and spermine in the course of 24 h. The transport was temperature-dependent as it increased with increasing temperature from 4°C to 30°C. In plants kept in 100% relative humidity the transport decreased by 27% compared to controls kept in 50% relative humidity. The existence of basipetal transport was assessed by feeding labeled putrescine to cotyledons or to a primary leaf of tomato plants at different stages of growth. The influence of ringing at the hypocotyl level on polyamine translocation in pine plants was studied in order to exclude cortical parenchyma and phloem from transport. Radioactivity decreased in the hypocotyl just above the ring and in the upper parts (epicotyls with needles), but long-distance transport was low affected indicating xylem transport. It is suggested that polyamine transport is not polar, and that it occurs mainly through xylem vessels.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Abstract: The subject of our investigation was the water regime of broad bean leaves ( Vicia faba L.), especially after having mechanically severed parts of the leaf blade and the leaf venation. Under moderate conditions, 18 - 22 °C temperature and 50 - 70 % relative humidity, the leaves remained viable even after extensive damage. Only if more than 90 % of the xylem cross sectional area of a leaf was severed, the leaf wilted. Lesser damage to the xylem cross-sectional area only resulted in a reduced rate of transpiration and assimilation, compared to intact leaves. The cuts in larger veins were bypassed into small or even very small veins, as shown by xylem transport of dyes. In intact leaves, small veins have a negligible task in long-distance transport. Here, however, transport velocity in small veins was severalfold increased compared to the measurement of transport velocity in veins of the same size in intact leaves. Thereby, water transport to leaf areas distal from the cut was ensured.  相似文献   

16.
    
Endogeneous levels of zinc and copper were found to be 1.2±0.1×10−2 and 0.3±0.1×10−2 μg/A260 unit, respectively, in polysomal fractions from control animals; cadmium, however, was undetectable. In experimental animals (injected with cadmium) zinc, copper, and cadmium were found in polysomal fractions isolated by two different methods. One hour after a cadmium injection there was a rise in both the zinc and copper content of the polysomal fractions, which then declined steadily to below control levels by 16 h. Neither zinc nor cadmium were dialyzable from these fractions by a TRIS buffer; however, addition of 0.01M EDTA to the buffer resulted in removal of 75% of the zinc and all of the detectable cadmium. The addition of cadmium (CdCl2) to control supernatants (adjusted to the cadmium concentration present in supernatants 6 h after in vivo exposure) resulted in metal binding to polysomal fractions in levels comparable to those observed after in vivo exposures to the metal. When cadmium was added in the form of cadmium thionein, a smaller fraction of the metal was isolated with the polysomal fraction. Cadmium bound to polysomal fractions in vivo (24 h after exposure) was sensitive to release by protease digestion, but insensitive to release by ribonuclease digestion.  相似文献   

17.
The present study investigated the impact of cumulative irrigation with wastewater on the soil properties and, its health hazards on the consumers of cabbage plants at south Cairo Province, Egypt. Irrigation water, soil and cabbage plants were sample d from two polluted and other two unpolluted farms. The physicochemical properties of water and soil were analyzed and the growth parameters, as well as nutrients and heavy metals concentration in cabbage were investigated. In addition, the daily intake of metals (DIM) and health risk index (HRI) were estimated. Wastewater posed a decrease in the availability of N, P and K, but increases heavy metals in the soil solution. Cabbage stem and root lengths as well as the number of leaves and biomass were greatly reduced in the polluted farms. In addition, the photosynthetic pigments, carbohydrates and proteins were decreased under pollution stress. The concentration of most investigated metals in the leaves and roots were increased with translocation factor greater than one for Pb, Cd, As, Cr, Ni, Fe, and Co. The study revealed that the HRI exceeded one for Pb and Cd in polluted and unpolluted plants; and Fe in polluted ones. Irrigation with wastewater is not suitable for cabbage as it has health risks on humans due to accumulation of heavy metals. It worth noting that, the high ability of cabbage plants to accumulate Pb and Cd from both polluted and unpolluted soils should be taken into consideration when consuming this plant.  相似文献   

18.
    
A study was undertaken with the aim of identifying a suitable plant for the phytoremediation of metal-polluted soil from an artisanal mining area in Ecuador. Three zones including a natural zone (NZ), abandoned zone (AZ) and intensively mined zone (IZ) were selected. Three common native plants grown in the three zones were identified and collected, including Miconia zamorensis, Axonopus compressus and Erato polymnioides. The percentage of arbuscular mycorrhizal colonization that benefits their own survival in polluted soil was analyzed in the root samples of these candidate species. Analysis of the soils and plants collected from the different zones showed that the concentrations of Pb, Zn, Cu and Cd were comparatively lower in the NZ, higher in the AZ and IZ, and highest in the AZ for all the metals. The concentration of all these metals in plant tissues was the highest in E. polymnioides. The data analysis including the metal accumulation index, bioconcentration factor and translocation factor strongly identified E. polymnioides as a hyperaccumulator plant suitable for phytoremediation.  相似文献   

19.
Application of microinjection techniques to plant nutrition   总被引:4,自引:0,他引:4  
Lucas  William J. 《Plant and Soil》1997,196(2):175-189
To gain a full understanding of the complex processes that underlie plant nutrition requires the elucidation of the genetic, molecular, biochemical, biophysical, physiological and environmental factors that interact, at the cellular, organ and whole plant levels, to allow this sessile organism to optimize the allocation and utilization of available resources. The application of microinjection methods, in conjunction with molecular tools, established a powerful experimental approach to elucidate the processes underlying plant growth and development. Besides providing insight into the molecular nature of many of the membrane transport systems that function in nutrient acquisition and transport, this approach revealed the presence of a unique plasmodesmal macromolecular trafficking system that operates at the cellular/tissue and whole-plant level. This information processing network it discussed in terms of its role in allowing plants to regulate physiological activities at a supracellular level. Future studies aimed at identifying additional genes associated with this plasmodesmal macromolecular trafficking system will advance our understanding of the function and evolution of this novel plant communication system.  相似文献   

20.
重金属镉抗性菌株的筛选及其对镉活化作用的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
夏娟娟  盛下放  江春玉 《生态学杂志》2005,24(11):1357-1360
通过在培养基中加入一定浓度的Cd2+,从土壤中分离筛选出2株具有较强镉抗性及产酸能力的细菌JL-4和JC-9。经初步鉴定,JL-4和JC-9分别属于芽孢杆菌属(Bacillussp.)和黄单胞菌属(Xan-thomonassp.)。将菌株JL-4和JC-9接种到添加不溶性镉(100 mg.L-1)的培养液中28℃培养48 h,接菌处理比不接菌对照培养液中有效镉含量分别增加1 392.3%和1 410.8%,培养液pH分别降低了2.87和3.18。将JL-4和JC-9分别接入含不同浓度重金属镉(100、200 mg.kg-1)的土壤中28℃培养20 d,接菌处理比不接菌对照土壤中有效镉含量分别增加17.02%~100%(JL 4)和36.17%~61.80%(JC-9)。菌株JL-4和JC-9的最适生长温度均为28℃,最适pH值分别为7和8。除对镉具有抗性外,两菌株对重金属铅、铜、镍、锌也具有一定抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号