首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A1916 in 23S rRNA is located in one of the major intersubunit bridges of the 70S ribosome. Deletion of A1916 disrupts the intersubunit bridge B2a, promotes misreading of the genetic code and is lethal. In a genetic selection for suppressor mutations, two base substitutions in 16S rRNA were recovered that restored viability and also allowed expression of ΔA1916-associated capreomycin resistance. These mutations were G1048A in helix 34 and U1471C in helix 44. Restoration of function is incomplete, however, and the double mutants are slow-growing, defective in subunit association and support high levels of translational errors. In contrast, none of these parameters is affected by the single 16S suppressor mutations. U1471C likely affects another intersubunit contact, bridge B6, suggesting that interactions between different bridges and cross-talk between subunits contributes to ribosomal function.  相似文献   

2.
Among 4.5 thousand nucleotides of Escherichia coli ribosome 36 are modified. These nucleotides are clustered in the functional centers of ribosome, particularly on the interface of large and small subunits. Nucleotide m2G1835 located on the 50S side of intersubunit bridge cluster B2 is modified by N2-methyltransferase RlmG. By means of isothermal titration calorimetry and Rayleigh light scattering, we have found that methylation of m2G1835 specifically enhances association of ribosomal subunits. No defects in fidelity of translation or interaction with translation GTPases could be ascribed to the ribosomes unmethylated at G1835 of the 23S rRNA. Methylation of G1835 was found to provide a significant advantage for bacteria at osmotic and oxidative stress.  相似文献   

3.
Helix 89 of the 23S rRNA connects ribosomal peptidyltransferase center and elongation factor binding site. Secondary structure of helix 89 determined by X-ray structural analysis involves less base pairs then could be drawn for the helix of the same primary structure. It can be that alternative secondary structure might be realized at some stage of translation. Here by means of site-directed mutagenesis we stabilized either the "X-ray" structure or the structure with largest number of paired nucleotides. Mutation UU2492-3C which aimed to provide maximal pairing of the helix 89 of the 23S rRNA was lethal. Mutant ribosomes were unable to catalyze peptide transfer independently either with aminoacyl-tRNA or puromycin.  相似文献   

4.
4.5S RNA is the bacterial homolog of the mammalian signal recognition particle (SRP) RNA that targets ribosome-bound nascent peptides to the endoplasmic reticulum. To explore the interaction of bacterial SRP with the ribosome, we have isolated rRNA suppressor mutations in Escherichia coli that decrease the requirement for 4.5S RNA. Mutations at C732 in 16S rRNA and at A1668 and G1423 in 23S rRNA altered the cellular responses to decreases in both Ffh (the bacterial homolog of SRP54) and 4.5S RNA levels, while the C1066U mutation in 16S rRNA and G424A mutation in 23S rRNA affected the requirement for 4.5S RNA only. These data are consistent with a dual role for 4.5S RNA, one involving co-translational protein secretion by a 4.5S-Ffh complex, the other involving free 4.5S RNA.  相似文献   

5.
6.
Leppik M  Ero R  Liiv A  Kipper K  Remme J 《Biochimie》2012,94(5):1080-1089
Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.  相似文献   

7.
Cooperative unfolding of Escherichia coli ribosome recycling factor (RRF) and its implication for function were investigated by comparing the in vitro unfolding and the in vivo activity of wild-type E. coli RRF and its temperature-sensitive mutant RRF(V117D). The experiments show that mutation V117D at domain I could perturb the domain II structure as evidenced in the near-UV CD and tyrosine fluorescence spectra though no significant globular conformation change occurred. Both equilibrium unfolding induced by heat or denaturant and kinetic unfolding induced by denaturant obey the two-state transition model, indicating V117D mutation does not perturb the efficient interdomain interaction, which results in cooperative unfolding of the RRF protein. However, the mutation significantly destabilizes the E. coli RRF protein, moving the thermal unfolding transition temperature range from 50-65 to 35-50 degrees C, which spans the non-permissive temperature for the growth of E. coli LJ14 strain (frr(ts)). The in vivo activity assays showed that although V117D mutation results in a temperature sensitive phenotype of E. coli LJ14 strain (frr(ts)), over-expression of mutant RRF(V117D) can eliminate the temperature sensitive phenotype at the non-permissive temperature (42 degrees C). Taking all the results into consideration, it can be suggested that the mechanism of the temperature sensitive phenotype of the E. coli LJ14 cells is due to inactivation of mutant RRF(V117D) caused by unfolding at the non-permissive temperatures.  相似文献   

8.
The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Δsnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Δnep1 growth defect. SnR57 mediates 2′-O-ribose-methylation of G1570 in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553–1577 of the 18S rRNA, which includes G1570, the site of snR57-dependent 18S rRNA methylation. From protein–protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.  相似文献   

9.
Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.  相似文献   

10.
11.
We used a mutagenesis and selection procedure in Drosophila melanogaster to recover rare allele-specific suppressor mutations. More than 11 million flies mutant for one of five recessive-lethal mutations in the two largest subunits of RNA polymerase II were selected for additional mutations that restored viability. Forty-one suppressor mutations were recovered. At least 16 are extragenic, identifying a minimum of three loci, two of which do not map near genes known to encode subunits of RNA polymerase II. At most, 25 are intragenic, 4 reverting the initial altered nucleotide back to wild type. Sequence analysis of interacting mutations in the two largest subunits identified a discrete domain in each subunit. These domains might be contact points for the subunits. Finally, our selections were large enough to allow recovery of multiple independent changes in the same nucleotides yet mutations in other equally likely targets were not recovered. The mutations recovered are not random and might provide insights into possible mechanisms for mutagenesis in eukaryotes. Received: 18 September 1997 / Accepted: 5 January 1998  相似文献   

12.
We have studied in vivo the phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli 50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fraction of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were under-represented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA-23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

13.
The article presents translational and rotational diffusion coefficients of 5S rRNA determined experimentally by the method of dynamic light scattering (DLS) and its comparison with the values predicted for different models of this molecule. The tertiary structure of free 5S rRNA was proposed on the basis of the atomic structures of the 5S rRNA from E. coli and H. marismortui extracted from the ribosome. A comparison of the values of DT, tauR, and Rg predicted for different models with experimental results for the free molecule in solution suggests that free 5S rRNA is less compact than that in the complex with ribosomal proteins. In general, the molecules of 5S rRNA consist of three domains: a short one and two longer ones. As follows from a comparison of the results of our simulations with experimental values, in the molecule in solution the two closest helical fragments of the longer domains remain collinear, whereas the short domain takes a position significantly deviated from them.  相似文献   

14.
15.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

16.
17.
The synthesis of a 5′-O-BzH–2′-O-ACE-protected pseudouridine phosphoramidite is reported [BzH, benzhydryloxy-bis(trimethylsilyloxy)silyl; ACE, bis(2-acetoxyethoxy)methyl]. The availability of the phosphoramidite allows for reliable and efficient syntheses of hairpin RNAs containing single or multiple pseudouridine modifications in the stem or loop regions. Five 19-nt hairpin RNAs representing the 1920-loop region (G1906–C1924) of Escherichia coli 23S rRNA were synthesized with pseudouridine residues located at positions 1911, 1915 and 1917. Thermodynamic parameters, circular dichroism spectra and NMR data are presented for all five RNAs. Overall, three different structural contexts for the pseudouridine residues were examined and compared with the unmodified RNA. Our main findings are that pseudouridine modifications exhibit a range of effects on RNA stability and structure, depending on their locations. More specifically, pseudouridines in the single-stranded loop regions of the model RNAs are slightly destabilizing, whereas a pseudouridine at the stem–loop junction is stabilizing. Furthermore, the observed effects on stability are approximately additive when multiple pseudouridine residues are present. The possible relationship of these results to RNA function is discussed.  相似文献   

18.
The occurrence of 16S rRNA gene mutations associated with resistance to tetracycline in H. pylori isolated in Bangladesh was investigated. Tetracycline susceptibility was determined by the agar dilution method. The 16S rRNA genes of these isolates were sequenced and analyzed. A tetracycline accumulation assay was performed. DNA sequence and transformation tests of nine tetracycline-resistant (MIC = 2 microg/ml) Bangladeshi H. pylori clinical isolates showed that in no case was the resistance due to mutations in the 16S rRNA gene, the only known cause of tetracycline resistance in this pathogen. Tetracycline accumulation assays implicated altered uptake or efflux.  相似文献   

19.
Loc1p is an exclusively nuclear dsRNA-binding protein that affects the asymmetric sorting of ASH1 mRNA to daughter cells in Saccharomyces cerevisiae. In addition to the role in cytoplasmic RNA localization, Loc1p is a constituent of pre-60S ribosomes. Cells devoid of Loc1p display a defect in the synthesis of 60S ribosomal subunits, resulting in “half-mer” polyribosomes. Previously, we reported that Loc1p is located throughout the entire nucleus; however, upon closer inspection we discovered that Loc1p is enriched in the nucleolus consistent with a role in 60S ribosome biogenesis. Given that Loc1p is an RNA-binding protein and presumably functions in the assembly of 60S ribosomal subunits, we investigated if Loc1p has a role in rRNA processing and nuclear export of 60S subunits. Analysis of pre-rRNA processing revealed that loc1Δ cells exhibit gross defects in 25S rRNA synthesis, specifically a delay in processing at sites A0, A1 and A2 in 35S pre-rRNA. Furthermore, loc1Δ cells exhibit nuclear export defects for 60S ribosomal subunits, again, consistent with a role for Loc1p in the assembly of 60S ribosomal subunits. It is attractive to hypothesize that the two phenotypes associated with loc1Δ cells, namely altered ASH1 mRNA localization and ribosome biogenesis, are not mutually exclusive, but that ribosome biogenesis directly impacts mRNA localization.  相似文献   

20.
RluD is the pseudouridine synthase responsible for the formation of Psi1911, Psi1915, and Psi1917 in Escherichia coli 23S rRNA. Previous work from our laboratory demonstrated that disruption of the rluD gene and/or loss of the pseudouridine residues for which it is responsible resulted in a severe growth phenotype. In the current work we have examined further the effect of the loss of the RluD protein and its product pseudouridine residues in a deletion strain lacking the rluD gene. This strain exhibits defects in ribosome assembly, biogenesis, and function. Specifically, there is a deficit of 70S ribosomes, an increase in 50S and 30S subunits, and the appearance of new 62S and 39S particles. Analysis of the 39S particles indicates that they are immature precursors of the 50S subunits, whereas the 62S particles are derived from the breakdown of unstable 70S ribosomes. In addition, purified mutant 70S ribosomes were found to be somewhat less efficient than wild type in protein synthesis. The defect in ribosome assembly and resulting growth phenotype of the mutant could be restored by expression of wild-type RluD and synthesis of Psi1911, Psi1915, and Psi1917 residues, but not by catalytically inactive mutant RluD proteins, incapable of pseudouridine formation. The data suggest that the loss of the pseudouridine residues can account for all aspects of the mutant phenotype; however, a possible second function of the RluD synthase is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号