首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneity of embryological origins is a hallmark of vascular smooth muscle cells (SMCs) and may influence the development of vascular disease. Differentiation of human pluripotent stem cells (hPSCs) into developmental origin-specific SMC subtypes remains elusive. Here we describe a chemically defined protocol in which hPSCs were initially induced to form neuroectoderm, lateral plate mesoderm or paraxial mesoderm. These intermediate populations were further differentiated toward SMCs (>80% MYH11(+) and ACTA2(+)), which displayed contractile ability in response to vasoconstrictors and invested perivascular regions in vivo. Derived SMC subtypes recapitulated the unique proliferative and secretory responses to cytokines previously documented in studies using aortic SMCs of distinct origins. Notably, this system predicted increased extracellular matrix degradation by SMCs derived from lateral plate mesoderm, which was confirmed using rat aortic SMCs from corresponding origins. This differentiation approach will have broad applications in modeling origin-dependent disease susceptibility and in developing bioengineered vascular grafts for regenerative medicine.  相似文献   

2.
We developed a novel strategy based on in vitro DNA transposition of phage Mu to construct vectors for "knock-in" of the gene encoding Cre recombinase into endogenous loci in embryonic stem cells. This strategy was used to introduce Cre into the mouse Meox1 locus, which was expected to drive Cre expression in the presomitic and somitic mesoderm. In embryos heterozygous for both Meox1(Cre) and R26R or Z/AP reporter alleles, specific and efficient recombination of the reporter alleles was detected in the maturing somites and their derivatives, including developing vertebrae, skeletal muscle, back dermis, as well as endothelium of the blood vessels invading the spinal cord and developing limbs. In contrast to the somitic mesoderm, Cre activity was not observed in the cranial paraxial mesoderm. Thus, the Meox1(Cre) allele allows detailed fate-mapping of Meox1-expressing tissues, including derivatives of the somitic mesoderm. We used it to demonstrate dynamic changes in the composition of the mesenchyme surrounding the developing inner ear. Meox1(Cre) may also be used for tissue-specific mutagenesis in the somitic mesoderm and its derivatives.  相似文献   

3.
To study paraxial mesoderm formation in the mouse, transgenic lines that can be used to either selectively delete or express genes of interest in the paraxial mesoderm are required. We have generated a transgenic mouse line that expresses Cre recombinase in the paraxial mesoderm (PAM) beginning at e7.5. A lacZ Cre recombinase reporter line showed that in addition to PAM and its derivatives, lateral plate and intermediate mesoderm derivatives were also exposed to Cre activity, while the node, notochord, and cardiac mesoderm were not. We further demonstrate that 70–75% of the fibroblasts generated from Dll1‐msd Cre, ROSA26‐rtTA embryos possess Cre recombinase activity. These mice can therefore be used in combination with tet‐responsive transgenic lines to generate mesoderm‐derived embryonic fibroblasts that inducibly express a gene of interest. genesis 47:309–313, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
We have examined the expression pattern of the avian Meox1 homeobox gene during early development and up to late limb bud stages. Its expression pattern indicates that it is involved in somite specification and differentiation. The domains of expression are similar but different to those of Meox2. Meox1 is expressed from stage 6 in the pre-somitic mesoderm and as development proceeds, in the tail bud, the dermomyotome of the rostral somites and in the dermomyotome and sclerotome of the caudal somites, the lateral rectus muscle, truncus arteriosus of the heart and the limb buds. Unlike Meox1, Meox2 is not expressed in the pre-somitic mesoderm, but is expressed first in somites formed from stage 11 onwards. In the developing limb, both genes are expressed in the dorsal and ventral limb mesoderm in adjacent domains with a small region of overlap. In the limb bud, Meox1 is co-expressed with Meox2 but neither Meox gene is co-expressed with MyoD. These expression patterns suggest that these two genes have overlapping and distinct functions in development.  相似文献   

5.
Data obtained from studies on the origin and development of hemopoietic cells in several classes of vertebrate embryos argue for two distinct sources of hemopoietic cells, the intraembryonic dorsal lateral plate and the extraembryonic ventral blood island/yolk sac. In the present study, a stage by stage comparison of the hemopoietic potential of both of these regions was made during development of the frog, Rana pipiens. Either dorsal lateral plate or ventral blood island mesoderm was reciprocally transplanted between cytogenetically labeled triploid and diploid embryos. The ratio of donor-derived cells to host-derived cells (labeling index) was determined from Feulgen-stained DNA measurements of cells harvested from hemopoietic organs of young larvae. Blood island transplants consistently resulted in larvae with positive labeling of the circulating blood. Transplanted dorsal mesoderm supplied mesonephric granulocytes and thymocytes, but not circulating erythrocytes to larvae. However, the contribution of dorsal mesoderm to larval hemopoiesis fluctuated with respect to embryonic stage at transplantation.  相似文献   

6.
7.
Structure and developmental expression are described for amphioxus AmphiVent, a homolog of vertebrate Vent genes. In amphioxus, AmphiVent-expressing ventral mesoderm arises at midneurula by outgrowth from the paraxial mesoderm, but in vertebrates, Vent-expressing ventral mesoderm originates earlier, at the gastrula stage. In other embryonic tissues (nascent paraxial mesoderm, neural plate, endoderm, and tailbud), AmphiVent and its vertebrate homologs are expressed in similar spatiotemporal domains, indicating conservation of many Vent gene functions during chordate evolution. The ventral mesoderm evidently develops precociously in vertebrates because their relatively large embryos probably require an early and extensive deployment of the mesoderm-derived circulatory system. The vertebrate ventral mesoderm, in spite of its strikingly early advent, still resembles the nascent ventral mesoderm of amphioxus in expressing Vent homologs. This coincidence may indicate that Vent homologs in vertebrates and amphioxus play comparable roles in ventral mesoderm specification.  相似文献   

8.
9.
Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae   总被引:3,自引:0,他引:3  
To address the expression and function of Hoxb13, the 5' most Hox gene in the HoxB cluster, we have generated mice with loss-of-function and beta-galactosidase reporter insertion alleles of this gene. Mice homozygous for Hoxb13 loss-of-function mutations show overgrowth in all major structures derived from the tail bud, including the developing secondary neural tube (SNT), the caudal spinal ganglia, and the caudal vertebrae. Using the beta-galactosidase reporter allele of Hoxb13, also a loss-of-function allele, we found that the expression patterns of Hoxb13 in the developing spinal cord and caudal mesoderm are closely associated with overgrowth phenotypes in the tails of homozygous mutant animals. These phenotypes can be explained by the observed increased cell proliferation and decreased levels of apoptosis within the tail of homozygous mutant mice. This analysis of Hoxb13 function suggests that this 5' Hox gene may act as an inhibitor of neuronal cell proliferation, an activator of apoptotic pathways in the SNT, and as a general repressor of growth in the caudal vertebrae.  相似文献   

10.
We have analysed the contributions of neural crest and mesoderm to mammalian craniofacial mesenchyme and its derivatives by cell lineage tracing experiments in mouse embryos, using the permanent genetic markers Wnt1-cre for neural crest and Mesp1-cre for mesoderm, combined with the Rosa26 reporter. At the end of neural crest cell migration (E9.5) the two patterns are reciprocal, with a mutual boundary just posterior to the eye. Mesodermal cells expressing endothelial markers (angioblasts) are found not to respect this boundary; they are associated with the migrating neural crest from the 5-somite stage, and by E9.5 they form a pre-endothelial meshwork throughout the cranial mesenchyme. Mesodermal cells of the myogenic lineage also migrate with neural crest cells, as the branchial arches form. By E17.5 the neural crest-mesoderm boundary in the subectodermal mesenchyme becomes out of register with that of the underlying skeletogenic layer, which is between the frontal and parietal bones. At E13.5 the primordia of these bones lie basolateral to the brain, extending towards the vertex of the skull during the following 4-5 days. We used DiI labelling of the bone primordia in ex-utero E13.5 embryos to distinguish between two possibilities for the origin of the frontal and parietal bones: (1) recruitment from adjacent connective tissue or (2) proliferation of the original primordia. The results clearly demonstrated that the bone primordia extend vertically by intrinsic growth, without detectable recruitment of adjacent mesenchymal cells.  相似文献   

11.
12.
The paraxial mesoderm of the somites of the vertebrate embryo contains the precursors of the axial skeleton, skeletal muscles and dermis. The Meox1 and Meox2 homeobox genes are expressed in the somites and their derivatives during embryogenesis. Mice homozygous for a null mutation in Meox1 display relatively mild defects in sclerotome derived vertebral and rib bones, whereas absence of Meox2 function leads to defective differentiation and morphogenesis of the limb muscles. By contrast, mice carrying null mutations for both Meox genes display a dramatic and wide-ranging synthetic phenotype associated with extremely disrupted somite morphogenesis, patterning and differentiation. Mutant animals lack an axial skeleton and skeletal muscles are severely deficient. Our results demonstrate that Meox1 and Meox2 genes function together and upstream of several genetic hierarchies that are required for the development of somites. In particular, our studies place Meox gene function upstream of Pax genes in the regulation of chondrogenic and myogenic differentiation of paraxial mesoderm.  相似文献   

13.
We show that cells of the dorsal aorta, an early blood vessel, and of the myotome, the first skeletal muscle to form within the somite, derive from a common progenitor in the mouse embryo. This conclusion is based on a retrospective clonal analysis, using a nlaacZ reporter targeted to the alpha-cardiac actin gene. A rare intragenic recombination event results in a functional nlacZ sequence, giving rise to clones of beta-galactosidase-positive cells. Periendothelial and vascular smooth muscle cells of the dorsal aorta are the main cell types labelled, demonstrating that these are clonally related to the paraxial mesoderm-derived cells of skeletal muscle. Rare endothelial cells are also seen in some clones. In younger clones, arising from a recent recombination event, myotomal labelling is predominantly in the hypaxial somite, adjacent to labelled smooth muscle cells in the aorta. Analysis of Pax3(GFP/+) embryos shows that these cells are Pax3 negative but GFP positive, with fluorescent cells in the intervening region between the aorta and the somite. This is consistent with the direct migration of smooth muscle precursor cells that had expressed Pax3. These results are discussed in terms of the paraxial mesoderm contribution to the aorta and of the mesoangioblast stem cells that derive from it.  相似文献   

14.
15.
Ventral blood island mesoderm and dorsal lateral plate mesoderm were removed from Rana pipiens embryos at successive developmental stages (stages 13-19; 50-118 h) and cultured as individual explants in serum-free medium. After 5-7 days, the cultures were harvested, and differential counts were made of Wright-Giemsa-stained cells. Ventral blood island explants gave rise to cells of the myeloid lineage, suggesting that ventral blood island mesoderm was committed to hemopoiesis at the time of explant. Although erythrocytes were present in the cultures, granulocytes and monocyte/macrophages predominated. This differentiation profile occurred without the addition of any exogenous humoral factors. Monocyte/macrophages and immature precursor cells exhibited recurring inverse fluctuations with respect to one another. In all cases examined, cultures of dorsal lateral plate mesoderm showed marginal hemopoietic cell differentiation, suggesting a requirement for exogenous humoral factors and/or cell-cell interactions. When viewed in the context of previous studies from our laboratory, these results demonstrate that, in the amphibian embryo, there are two sources of hemopoietic stem cells separated both in space and time.  相似文献   

16.
目的建立心脏特异表达Meox1转基因小鼠,研究Meox1对心脏发育及心肌病的调节作用。方法利用心脏特异启动子α-MHC构建转基因表达载体,显微注射法建立Meox1转基因小鼠,PCR鉴定转基因小鼠的基因型,Western blot检测Meox1在心脏组织中的表达,心脏超声检测转基因小鼠及野生小鼠的心脏结构和功能。结果在生理状态下,Meox1基因只在幼鼠心脏中表达,在病理状态下,Meox1基因在成年心肌病小鼠的心脏组织表达升高。通过显微注射,建立了两个Meox1基因在心脏组织的表达水平明显高于同龄对照小鼠的转基因小鼠品系。与野生型小鼠相比,两个Meox1转基因小鼠品系收缩期左室内径分别增加7.2%、12.8%(P〈0.01,n=16),舒张期左室内径分别增加15.6%、24.2%(P〈0.01,n=16),收缩期容积分别增加36.8%、65.7%(P〈0.01,n=16),舒张期容积分别增加18.2%、33.8%(P〈0.01,n=16)。射血分数分别减小6.6%、9.3%(P〈0.05,n=16),短轴内径缩短率分别减小9.4%、12.3%(P〈0.05,n=16)。结论Meox1在心肌病心脏中表达,其在心脏高表达引起心脏左室内径增加,收缩期容积和舒张期容积显著增大,射血分数及短轴缩短率减少等扩张性心肌病表型,是参与心肌病病理发生的基因之一。  相似文献   

17.
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2‐Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2‐ and glycine‐immunoreactive antibodies; here, >80% of the glycine‐immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2‐Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons. genesis 48:437–445, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.  相似文献   

19.
Multiple steps, including the migration of vascular smooth muscle cells (SMCs), are involved in the pathogenesis of atherosclerosis. To discover genes which are involved in these steps, we screened mutant mouse lines established by the exchangeable gene trap method utilizing X-gal staining during their embryonic development. One of these lines showed strong reporter gene expression in the vitelline vessels of yolk sacs at embryonic day (E) 12.5. The trap vector was inserted into the fifth intron of alpha/beta hydrolase domain containing 2 (Abhd2) gene which was shown to be expressed in vascular and non-vascular SMCs of adult mice. Although homozygous mutant mice were apparently normal, enhanced SMC migration in the explants SMCs culture and marked intimal hyperplasia after cuff placement were observed in homozygous mice in comparison with wild-type mice. Our results show that Abhd2 is involved in SMC migration and neointimal thickening on vascular SMCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号