首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary fibrosis is the end stage of a heterogeneous group of disorders and is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium. There is increasing evidence from a number of studies that activation of the coagulation cascade, with the resultant generation of coagulation proteases, plays a central role in fibrotic lung disease that is associated with acute and chronic lung injury. Consistent with this finding, levels of thrombin are increased in bronchoalveolar lavage fluid from patients and in animal models of this disorder. In addition to its classical role in blood coagulation, thrombin exerts a number of proinflammatory and profibrotic cellular effects in vitro that are critically important in tissue repair processes. These cellular effects are predominantly mediated via proteolytic activation of the major thrombin receptor protease-activated receptor-1 (PAR-1). This has led us to hypothesize that the procoagulant and the downstream cellular effects of thrombin, which are initiated following receptor activation, may be important in promoting tissue fibrosis in vivo. To examine this hypothesis, we assessed the effect of a direct thrombin inhibitor in bleomycin-induced pulmonary fibrosis in rats. Immunohistochemical studies showed that expression of thrombin and PAR-1 in lung tissue increased dramatically after intratracheal instillation of bleomycin, compared with saline-treated animals. After bleomycin instillation, there was a doubling in the amount of lung collagen after 14 days, which was preceded by elevations in alpha(1)(I) procollagen and connective tissue growth factor (CTGF) mRNA levels. However, when bleomycin-treated animals concurrently received a continuous infusion of a direct thrombin inhibitor at an anticoagulant dose, lung collagen accumulation in response to bleomycin was attenuated by up to 40%. Furthermore, alpha(1)(I) procollagen and CTGF mRNA levels were also significantly reduced in these animals. These findings confirm that thrombin is a key mediator in the pathogenesis of this condition and suggest that the cellular effects of thrombin may be critically important in promoting lung collagen accumulation in this experimental model of pulmonary fibrosis. Targeting the profibrotic effects of coagulation proteases warrants further evaluation as a potential therapeutic strategy for fibrotic lung disease.  相似文献   

2.
The most significant complication of testicular torsion is loss of the testis, which may lead to impaired fertility. Molecular mechanisms how spermatogenesis impairs owing to testicular torsion remain unknown. This investigation, by using mouse model of testicular torsion, was undertaken to gain insight into the cellular and molecular mechanism underlying torsion-induced germ cell loss. Male mice were subjected to 2 h ischemia-inducing torsion, and testes were examined at 24, 48, and 72 h after the repair of torsion (reperfusion). Ischemia-reperfusion (IR) of the testes resulted in germ cell, mostly in spermatogonia, apoptosis, which was revealed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) technique. At 24 h after torsion repair germ cell apoptosis reached peak, then decreased until 72 h repair. Western blots showed that apoptotic proteins (p53, Caspase-3 and -9) gradually were upregulated at 48 h reperfusion, however, anti-apoptotic proteins (Bcl-2 and BDNF) were downregulated in the relevant IR treatment. IR injury induced CHOP protein appearance with maximum expression at 24 h of reperfusion. Furthermore, the germ cell apoptosis triggered downregulation of ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) at both mRNA and protein levels. To test further whether ubiquitination was involved in IR stress, both mono- and poly-ubiquitin levels in IR stress condition were examined, which showed that both mono- and poly-ubiquitin expression significantly impaired. These results provide evidences of UCH-L1/ubiquitination signaling to the testis IR injury in vivo.  相似文献   

3.
Ischemic preconditioning (IPC) not only reduces local tissue injury caused by subsequent ischemia-reperfusion (IR) but may also have a beneficial effect on IR injury of tissues remote from those undergoing preconditioning. In this study, we investigated the effect of small intestinal IPC on renal IR injury in rats. Renal IR injury was induced by a 45-min renal artery occlusion and reperfusion for 2 or 24 h in rats with a previous contralateral nephrectomy, and ischemic preconditioning was induced by 3 cycles of 8-min ischemia and 5-min reperfusion of the small intestine. We then measured the concentrations of plasma creatinine (Cr) and blood urine nitrogen (BUN) and the level of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and catalase (CAT) in the renal cortex. Renal histopathology also was evaluated. Pretreatment with intestinal ischemic preconditioning significantly alleviated renal IR injury, as shown by decreases in the levels of Cr, BUN, and MDA, decreased renal morphologic change, and improved preservation of SOD and CAT activities. These results suggest that remote ischemic preconditioning of the small intestine protects against renal IR injury by inhibition of lipid peroxidation and preservation of antioxidant enzyme activities.  相似文献   

4.
BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating these two genes is less than 100 kb. CONCLUSIONS: The fact that the thrombin receptor and PAR2 genes share an identical structure and are located within approximately 100 kb of each other in the genome demonstrates that these genes arose from a gene duplication event. These results define a new protease-activated receptor gene cluster in which new family members may be found.  相似文献   

5.
LOX-1 pathway affects the extent of myocardial ischemia-reperfusion injury   总被引:2,自引:0,他引:2  
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was originally identified as a receptor for oxidized low-density lipoprotein predominantly expressed in endothelial cells. LOX-1 expression can be induced in cardiomyocytes and that activation of LOX-1 is involved in apoptosis. To investigate possible roles of LOX-1 in myocardial ischemia-reperfusion injury, rats were subjected to coronary artery ligation for 1h followed by reperfusion for 2h. Immunohistochemistry revealed that expression of LOX-1 in cardiac myocytes was induced following ischemia-reperfusion but not ischemia alone. Administration of anti-LOX-1 monoclonal antibody resulted in a nearly 50% reduction in myocardial infarction size compared with that of normal IgG or saline (P<0.05). These findings suggest that activation of the LOX-1 pathway is involved in determining the extent of myocardial ischemia-reperfusion injury and that inhibition of the LOX-1 pathway may provide a novel strategy for treatment of acute myocardial infarction in humans.  相似文献   

6.
Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the hepatic microvascular dysfunction elicited by gut ischemia-reperfusion (I/R). Although the effects of chronic ethanol (EtOH) consumption on the liver are well known, it remains unclear whether this condition renders the hepatic microcirculation more vulnerable to the deleterious effects of gut and/or hepatic I/R. The objectives of this study were to determine whether chronic EtOH consumption alters the severity of gut I/R-induced hepatic microvascular dysfunction and hepatocellular injury and to determine whether ICAM-1 contributes to this response. Male Wistar rats, pair fed for 6 wk a liquid diet containing EtOH or an isocaloric control diet, were exposed to gut I/R. Intravital video microscopy was used to monitor leukocyte recruitment in the hepatic microcirculation, the number of nonperfused sinusoids (NPS), and plasma concentrations of endotoxin and tumor necrosis factor-alpha. Plasma alanine aminotransferase (ALT) levels were measured 6 h after the onset of reperfusion. In control rats, gut I/R elicited increases in the number of stationary leukocytes, NPS, and plasma endotoxin, tumor necrosis factor-alpha, and ALT. In EtOH-fed rats, the gut I/R-induced increases in NPS and leukostasis were blunted in the midzonal region, while exaggerated leukostasis was noted in the pericentral region and terminal hepatic venules. Chronic EtOH consumption also enhanced the gut I/R-induced increase in plasma endotoxin and ALT. The exaggerated responses to gut I/R normally seen in EtOH-fed rats were largely prevented by pretreatment with a blocking anti-ICAM-1 monoclonal antibody. In conclusion, these results suggest that chronic EtOH consumption enhances gut I/R-induced hepatic microvascular dysfunction and hepatocellular injury in the pericentral region and terminal hepatic venules via an enhanced hepatic expression of ICAM-1.  相似文献   

7.
We examined the role of C activation in ischemia reperfusion injury by inhibiting C activation in a rat model of mesenteric arterial occlusion. In anesthetized rats, 60 min of mesenteric arterial occlusion was followed by 3 h of reperfusion. PBS alone or containing soluble C receptor 1 (3 or 6 mg) was administered i.v. Controls underwent laparotomy without ischemia. Relative serum C activities were assessed by hemolytic assay, neutrophil (polymorphonuclear leukocyte) sequestration by tissue content of myeloperoxidase (MPO) activity, intestinal mucosal injury by histologic grading, lung vascular permeability by the ratio of bronchoalveolar lavage to blood concentration of radiolabeled BSA, and endothelial cell injury was quantified by measurement of plasma factor VIII-related Ag. After reperfusion, PBS-treated animals had increased intestinal MPO (0.048 +/- 0.007 U/g) compared to sham (0.022 +/- 0.005 U/g (p less than 0.05)) and intestinal mucosal injury score (2.490 +/- 0.221) compared to sham (0.331 +/- 0.045 (p less than 0.05)). Treatment with 6 mg soluble C receptor 1 15 min before reperfusion reduced intestinal MPO (0.017 +/- 0.003 U/g (p less than 0.05)) and mucosal injury (1.733 +/- 0.168 (p less than 0.05)) compared to PBS control. PBS-treated animals also demonstrated increased lung MPO (0.314 +/- 0.025 U/g vs 0.085 +/- 0.018 in sham (p less than 0.05)) and increased lung permeability (bronchoalveolar lavage/blood cpm 11.32 +/- 1.35 x 10(-3) vs sham 2.22 +/- 0.19 x 10(-3) (p less than 0.05)). Treatment with 6 mg soluble C receptor 1 15 min before reperfusion or at reperfusion reduced the lung permeability (bronchoalveolar lavage/blood cpm 3.90 +/- 0.79 x 10(-3) and 5.08 +/- 0.75, respectively (both p less than 0.05)) compared to PBS control, but did not reduce lung MPO (0.342 +/- 0.031 U/g and 0.246 +/- 0.025), respectively. Treatment with sCR1 also reduced the release of factor VIII-related Ag, 5-day mortality, and C hemolytic activity. In this model, C is a major mediator of intestinal injury and extraintestinal injury.  相似文献   

8.
We examined the role of the nitric oxide (NO) pathway on ischemia-reperfusion injury via the use of isolated perfused guinea pig lungs. We administered both L-Arginine and N-nitro-L-arginine methyl ester (L-NAME) to the lungs in or after 3 h of ischemia. We observed pulmonary artery pressures as well as tissue and perfusate malondialdehyde (MDA) and glutathione (GSH) levels. We observed that L-NAME significantly increased both tissue and perfusate GSH levels and pulmonary artery pressures, but it decreased both tissue and perfusate MDA levels. On the other hand, L-arginine significantly decreased pulmonary artery pressure and both tissue and perfusate glutathione levels, but it increased both tissue and perfusate MDA levels. Electron microscopic evaluation supported our findings by indicating the preservation of lamellar bodies of type II pneumocytes. We concluded that L-NAME administration during reperfusion improves lung recovery from ischemic injury.  相似文献   

9.
Neutrophil-endothelial adhesion in venules and progressive vasoconstriction in arterioles seem to be important microcirculatory events contributing to the low flow state associated with ischemia-reperfusion injury of skeletal muscle. Although the neutrophil CD-18 adherence function has been shown to be a prerequisite to the vasoconstrictive response, the vasoactive substances involved remain unknown. The purpose of this study was to evaluate the role of thromboxane A2 receptor in the arteriole vasoactive response to ischemia-reperfusion injury. An in vivo microscopy preparation of transilluminated gracilis muscle in male Wistar rats (175 +/- 9 g) (n = 12) was used for this experiment. Three experimental groups were evaluated in this study: (1) sham, flap raised, no ischemia (20 venules, 20 arterioles), (2) 4 hours of global ischemia only (19 venules, 22 arterioles), and (3) 4 hours of global ischemia + thromboxane A2 receptor antagonist (ONO-3708) (17 venules, 20 arterioles). ONO-3708 (5 mg/kg), a specific competitive antagonist of thromboxane A2 receptor, was infused at a rate of 0.04 ml/minute into the contralateral femoral vein 30 minutes before reperfusion. Mean arterial blood pressure was not changed at this dose of ONO-3708 (88 +/- 6 mmHg before infusion, 81 +/- 4 mmHg after infusion, n = 3). The number of leukocytes rolling and adherent to endothelium (15-sec observation) were counted in 100-microm venular segments, and arteriole diameters were measured at 5, 15, 30, 60, and 120 minutes of reperfusion. Leukocyte counts and arteriole diameters were analyzed with two-way factorial analysis of variance for repeated measures and Duncan's post hoc mean comparison. Statistical significance was indicated by a p < or = 0.05. The ischemia-reperfusion-induced vasoconstriction was significantly reduced by the thromboxane A2 receptor antagonist (ONO-3708). The mean arteriole diameters at 30, 60, and 120 minutes reperfusion were significantly greater in the treated animals than in the ischemia-reperfusion controls. Despite a significant increase in treated mean arteriole diameters, 30 percent of arterioles still demonstrated vasoconstriction. Neutrophil-endothelial adherence was not reduced by ONO-3708. Thromboxane A2 receptor blockade significantly reduces but does not eliminate ischemia-reperfusion-induced vasoconstriction in this model. This finding suggests that additional and perhaps more important vasoactive mediators contribute to vasoconstriction. Furthermore, thromboxane A2 receptor blockade has no effect on polymorphonuclear endothelial adherence.  相似文献   

10.
Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1−/−) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1−/− mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1−/− mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1−/− mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1−/− mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1−/− mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1/CCR2 signaling-dependent inflammatory responses.  相似文献   

11.
12.
HS Ding  J Yang  FL Gong  J Yang  JW Ding  S Li  YR Jiang 《Gene》2012,509(1):149-153
This study aimed to explore the role of high mobility box 1 (HMGB1) and its receptor toll like receptor 4 (TLR4) on neutrophils in myocardial ischemia reperfusion (I/R) injury. We constructed TLR4-mutant (C3H/HeJ) and control (C3H/HeN) mouse models of myocardial I/R injury and subjected the mice to 30min of ischemia and 6h of reperfusion. Light microscope was used to observe structural changes in the myocardium. HMGB1 levels were measured using quantitative real-time PCR and immunohistochemistry. Neutrophil accumulation, TNF-a expression and IL-8 levels were analyzed via myeloperoxidase (MPO) biochemical studies, quantitative real-time PCR and ELISA, respectively. The results demonstrated that fewer neutrophils infiltrated in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency markedly decreased the ischemic injury caused by ischemia/reperfusion, and inhibited the expression of HMGB1, TNF-a, and IL-8, all of which were up-regulated by ischemia/reperfusion. These findings suggest that HMGB1 plays a central role in recruiting neutrophils during myocardial I/R leading to worsened myocardial I/R injury. This recruitment mechanism is possibly due to its inflammatory and chemokine functions based on the TLR4-dependent pathway.  相似文献   

13.
F Wang  Q Li  C Wang  C Tang  J Li 《PloS one》2012,7(7):e42027

Background

Intestinal ischemia-reperfusion (I/R) plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.

Methodology/Principal Findings

Denaturing gradient gel electrophoresis (DGGE) was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.

Conclusion/Significance

This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.  相似文献   

14.
Guo Y  Yang T  Lu J  Li S  Wan L  Long D  Li Q  Feng L  Li Y 《Life sciences》2011,88(13-14):598-605
AimsGinsenoside Rb1 could prevent ischemic neuronal death and focal cerebral ischemia, but its roles to liver warm I/R injury remain to be defined. We determined if Rb1 would attenuate warm I/R injury in mice.Main methodsMice were divided into sham, I/R, Rb1 + I/R (Rb1 postconditioning, 20 mg/kg, i.p. after ischemia), sham + L-NAME, I/R + L-NAME, and Rb1 + I/R + L-NAME groups using 60 min of the liver median and left lateral lobes ischemia. Serum levels of alanine aminotransferase (ALT) were measured and morphology changes of livers were evaluated. Contents of nitric oxide (NO) and nitric oxide synthase (NOS), malondialdehye (MDA) and activity of superoxide dismutase (SOD) were measured. Expressions of Akt, p-Akt, iNOS, HIF-1alpha, tumor necrosis factor-a (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) were also determined by western blot or immunohistochemistry.Key findingsRb1 postconditioning attenuated the dramatically functional and morphological injuries. The levels of ALT were significantly reduced in Rb1 group (p < 0.05). Rb1 upregulated the concentrations of NO, iNOS in serum, iNOS, and activity of SOD in hepatic tissues (p < 0.05), while it dramatically reduced the concentration of MDA (p < 0.05). Protein expressions of p-Akt, iNOS and HIF-1alpha were markedly enhanced in Rb1 group. Protein and mRNA expressions of TNF-α and ICAM-1 were markedly suppressed by Rb1 (p < 0.05).SignificanceWe found that Rb1 postconditioning could protect liver from I/R injury by upregulating the content of NO and NOS, and also HIF-1alpha protein expression. These protective effects could be abolished by L-NAME. These findings suggested Rb1 may have the therapeutic potential through ROS-NO-HIF pathway for management of liver warm I/R injury.  相似文献   

15.
16.
Several growth factors are trophic for the gastrointestinal tract and able to reduce the degree of intestinal damage caused by cytotoxic agents. However, studies of epidermal growth factor (EGF) for chemotherapy-induced intestinal injury are conflicting. The development of a transgenic mouse that specifically overexpresses EGF in the small intestine provided a unique opportunity to assess the contribution of EGF in mucositis. After a course of fluorouracil, transgenic mice fared no better than control mice. Weight recovery was inferior, and mucosal architecture was not preserved. Apoptosis was not decreased and proliferation was not increased in the crypts. To corroborate the findings in transgenic mice, ICR mice were treated with exogenous EGF after receiving fluorouracil. Despite ileal upregulation of native and activated EGF receptor, the mice were not protected from intestinal damage. No benefits were observed with different EGF doses or schedules or routes of EGF administration. Finally, mucositis was induced in mutant mice with specific defects of the EGF signaling axis. Compared with control mice, clinical and histological parameters of intestinal injury after fluorouracil were no different in waved-2 mice, which have functionally diminished EGF receptors, or waved-1 mice, which lack transforming growth factor-alpha, another major ligand for the EGF receptor. These findings do not support a critical role for EGF or its receptor in chemotherapy-induced intestinal injury.  相似文献   

17.

Background

Neutrophils are known to be key players in innate immunity. Activated neutrophils induce local inflammation, which results in pathophysiologic changes during intestinal ischemia-reperfusion injury (IRI). However, most studies have been based on static assessments, and few have examined real-time intravital neutrophil recruitment. We herein report a method for imaging and evaluating dynamic changes in the neutrophil recruitment in intestinal IRI using two-photon laser scanning microscopy (TPLSM).

Methods

LysM-eGFP mice were subjected to 45?min of warm intestinal ischemia followed by reperfusion. Mice received an intravenous injection of tetramethylrhodamine isothiocyanate-labeled albumin to visualize the microvasculature. Using a time-lapse TPLSM technique, we directly observed the behavior of neutrophils in intestinal IRI.

Results

We were able to image all layers of the intestine without invasive surgical stress. At low-magnification, the number of neutrophils per field of view continued to increase for 4?h after reperfusion. High-magnification images revealed the presence or absence of blood circulation. At 0–2?h after reperfusion, rolling and adhesive neutrophils increased along the vasculature. At 2–4?h after reperfusion, the irregularity of crypt architecture and transmigration of neutrophils were observed in the lamina propria. Furthermore, TPLSM imaging revealed the villus height, the diameters of the crypt, and the number of infiltrating neutrophils in the crypt. In the IRI group, the villus height 4?h after reperfusion was significantly shorter than in the control group.

Conclusions

TPLSM imaging revealed the real-time neutrophil recruitment in intestinal IRI. Z-stack imaging was useful for evaluating pathophysiological changes in the intestinal wall.  相似文献   

18.
Lin J  Yan GT  Wang LH  Hao XH  Zhang K  Xue H 《Peptides》2004,25(12):2187-2193
As leptin is an active mediator mainly secreted by adipose tissue and is closely related with energy metabolism, we evaluate both the changes of leptin levels in serum and adipose tissue with a concise radioimmunoassay and the changes of leptin mRNA expression in adipose tissue with RT-PCR, during the severe metabolic impediment in rat intestinal ischemia-reperfusion (I/R) injury. Results show that not only leptin levels in serum and adipose tissue but also its mRNA expression in adipose tissue undergo a fluctuation according to different injury times. Therefore, we conclude that leptin has a time-dependent response to acute inflammatory stimuli and acts as an anti-inflammatory cytokine.  相似文献   

19.
Various mechanisms have been proposed for the pathogenesis of postischemic hepatic injury, including the generation of reactive oxygen metabolites. Oxytocin (OT) possesses antisecretory, antiulcer effects, facilitates wound healing and has anti-inflammatory properties. Hepatic ischemia-reperfusion (I/R)-injury was induced by inflow occlusion to median and left liver lobes ( approximately 70%) for 30 min of ischemia followed by 1h reperfusion in female Sprague-Dawley rats under anesthesia. I/R group (n=8) was administered intraperitoneally either OT (500 microg/kg) or saline at 24 and 12 h before I/R and immediately before reperfusion. Sham-operated group that underwent laparotomy without hepatic ischemia served as the control. Rats were decapitated at the end of reperfusion period. Hepatic samples were obtained for the measurement of myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH) and collagen levels and histopathological analysis. Tumor necrosis factor-alfa (TNF-alpha) and transaminases (SGOT, SGPT) were assayed in serum samples. I/R injury caused significant increases in hepatic microscopic damage scores, MPO activity, collagen levels, transaminase, serum TNF-alpha levels. Oxytocin treatment significantly reversed the I/R-induced elevations in serum transaminase and TNF-alpha levels and in hepatic MPO and collagen levels, and reduced the hepatic damage scores. OT treatment had tendency to abolish I/R-induced increase in MDA levels, while GSH levels were not altered. These results suggest that OT has a protective role in hepatic I/R injury and its protective effect in the liver appears to be dependent on its inhibitory effect on neutrophil infiltration.  相似文献   

20.
Cardiac ischemia--reperfusion injury results in oxidative stress and poor physiological recovery. This study examined the amount of lipid and protein oxidation during ischemia-reperfusion to assess the degree of oxidative stress. Selenium supplementation was used to alter the antioxidant status of rats and the recovery of myocardial function post ischemia-reperfusion was investigated. Male Wistar rats were fed diets containing 0, 50, and 1000 microg/kg sodium selenite for 5 weeks, whilst controls received normal rat food containing 240 microg/kg selenium. Langendorff-perfused hearts were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Heart tissues were assayed for the presence of lipid peroxides and protein carbonyls and correlated to cardiac recovery. Following ischemia and reperfusion there was a significant increase in both protein oxidation and lipid peroxidation. Hearts from selenium-deficient animals demonstrated higher levels of both protein carbonyls and lipid peroxides and were more susceptible to ischemia-reperfusion injury when compared to controls (38% versus 47% recovery of rate pressure product (RPP)). Selenium supplementation lowered the levels of protein carbonyls and lipid peroxides and resulted in improved recovery of cardiac function post ischemia-reperfusion (57% recovery of RPP). These data suggest that selenium supplementation may provide an effective method for reducing oxidative damage post cardiac ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号