首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Lactalbumin: structure and function   总被引:1,自引:0,他引:1  
Small milk protein alpha-lactalbumin (alpha-LA), a component of lactose synthase, is a simple model Ca(2+) binding protein, which does not belong to the EF-hand proteins, and a classical example of molten globule state. It has a strong Ca(2+) binding site, which binds Mg(2+), Mn(2+), Na(+), and K(+), and several distinct Zn(2+) binding sites. The binding of cations to the Ca(2+) site increases protein stability against action of heat and various denaturing agents, while the binding of Zn(2+) to the Ca(2+)-loaded protein decreases its stability. Functioning of alpha-LA requires its interactions with membranes, proteins, peptides and low molecular weight substrates and products. It was shown that these interactions are modulated by the binding of metal cations. Recently it was found that some folding variants of alpha-LA demonstrate bactericidal activity and some of them cause apoptosis of tumor cells.  相似文献   

2.
The calcium binding properties of annexin I as observed by thermodynamic DSC studies have been compared to the structural information obtained from X-ray investigation. The calorimetric experiment permitted to evaluate both the reaction scheme - including binding of ligand and conformational changes - and the energetics of each reaction step. According to published X-ray data Annexin I has six calcium binding sites, three medium-affinity type II and three low-affinity type III sites.The present study shows that at 37 degrees C annexin I binds in a Hill type fashion simultaneously two calcium ions in a first step with medium affinity at a concentration of 0.6 mM and another three Ca(2+) ions again cooperatively at 30 mM with low affinity. Therefore it can be concluded that only two medium-affinity type II binding sites are available. The third site, that should be accessible in principle appears to be masked presumably due to the presence of the N terminus. In view of the large calcium concentration needed for saturation of the binding sites, annexin I may be expected to be Ca(2+) free in vivo unless other processes such as membrane interaction occur simultaneously. This assumption is consistent with the finding, that the affinity of annexins to calcium is usually markedly increased by the presence of lipids.  相似文献   

3.
alpha-Lactalbumin (alpha-LA), a calcium-binding protein, also possesses zinc-binding sites comprising a single strong site and several weaker secondary sites. The only site found by X-ray crystallography (Ren et. al., J. Biol. Chem. 1993;268:19292) was Glu 49 of human alpha-LA, but zinc binding had never been measured in solution for human alpha-LA. This residue was genetically substituted by Ala in bovine alpha-LA and the metal-binding properties of the resulting desMetE49A protein were compared with those for native alpha-LA by fluorescence methods. Surprisingly, desMetE49A alpha-LA and the native bovine protein had similar affinities for both Zn(2+) and Ca(2+). Genetic substitution of other possible candidates for Zn(2+) chelating residues, which included Glu 25, did not alter the affinity of bovine alpha-LA to Zn2+; however, substitution of Glu 1 by Met resulted in the disappearance of strong Zn(2+) binding. A proposed site involves Glu 1, Glu 7, Asp 11, and Asp 37, which would participate in strong Zn(2+) binding based on their propinquity to Glu 1. Human alpha-LA, which has a Lys at position 1 rather than Glu, binds zinc with a reduced affinity compared with native bovine alpha-LA, suggesting that the site identified from the X-ray structure did not correspond to strong zinc binding in solution.  相似文献   

4.
In order to examine the effect of a metal binding to the polypeptide chain on the aggregation of a protein in the refolding process, we prepared a mutant hen lysozyme possessing the same Ca(2+) binding site as in human alpha-lactalbumin by Escherichia coli expression system (Ser(-1) CaB lysozyme). In the presence of 2 mM CaCl(2), the refolding yield of Ser(-1) CaB lysozyme at a low protein concentration (25 microg/mL) was similar to that of the wild-type lysozyme (80%), but that at high protein concentration (200 microg/mL) decreased (15%) due to aggregation comparing to that of the wild-type lysozyme (45%). However, the refolding yield of Ser(-1) CaB lysozyme in the presence of 100 mM CaCl(2) even at a protein concentration of 200 microg/mL was 80% and was higher than that of the wild-type lysozyme. From analysis of chemical shift changes of the cross peaks in the backbone region of total correlated spectroscopy (TOCSY) spectra of a decapeptide possessing the same calcium binding site as in Ser(-1) CaB lysozyme in the presence of various concentrations of Ca(2+), it was suggested that the dissociation constant of Ca(2+)-peptide complex was estimated to be 20-36 mM. Moreover, the solubility of the denatured Ser(-1) CaB lysozyme in the presence of 100 mM CaCl(2) was higher than that in the presence of 2 mM CaCl(2) whereas the solubility of the denatured Ser(-1) lysozyme in the presence of 100 mM CaCl(2) was not higher than that in the presence of 2 mM CaCl(2). Therefore, it was concluded that the reduced lysozyme possessing the Ca(2+) binding site was efficiently folded in the presence of high concentration of Ca(2+) (100 mM) even at high protein concentration due to depression of aggregation by the binding of Ca(2+) to the polypeptide chain in Ser(-1) CaB lysozyme.  相似文献   

5.
Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca(2+) affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca(2+) titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca(2+) binding to the two N-terminal Ca(2+) binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca(2+) binding data showed that the Asp --> Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp --> Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp --> Ala mutation at position 30 eliminates the differences in Ca(2+) affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca(2+) binding to site I is dependent on the previous binding of metal to site II.  相似文献   

6.
Calexcitin (CE) is a calcium sensor protein that has been implicated in associative learning through the Ca(2+)-dependent inhibition of K(+) channels and activation of ryanodine receptors. CE(B), the major CE variant, was identified as a member of the sarcoplasmic Ca(2+) binding protein family: proteins that can bind both Ca(2+) and Mg(2+). We have now determined the intrinsic Ca(2+) and Mg(2+) binding affinities of CE(B) and investigated their interplay on the folding and structure of CE(B). We find that urea denaturation of CE(B) displays a three-state unfolding transition consistent with the presence of two structural domains. Through a combination of spectroscopic and denaturation studies we find that one domain likely possesses molten globule structure and contains a mixed Ca(2+)/Mg(2+) binding site and a Ca(2+) binding site with weak Mg(2+) antagonism. Furthermore, ion binding to the putative molten globule domain induces native structure formation. The other domain contains a single Ca(2+)-specific binding site and has native structure, even in the absence of ion binding. Ca(2+) binding to CE(B) induces the formation of a recessed hydrophobic pocket. On the basis of measured ion binding affinities and intracellular ion concentrations, it appears that Mg(2+)-CE(B) represents the resting state and Ca(2+)-CE(B) corresponds to the active state, under physiological conditions.  相似文献   

7.
The residue Asp87, which is in the calcium-binding loop of bovine alpha-lactalbumin (alpha-LA) and provides a side-chain carboxylate oxygen for ligand Ca(II) co-ordination, was substituted by either alanine or asparagine. The physical properties and calcium-binding affinities were monitored by intrinsic fluorescence and circular dichroism spectroscopy. D87A alpha-LA displayed a total loss of rigid tertiary structure, a dramatic loss in secondary structure and negligible calcium affinity [Anderson et al. (1997) Biochemistry, 36, 11648-11654]. On the contrary, D87N alpha-LA displayed native-like secondary structure with a somewhat de-stabilized tertiary structure. When the well-documented N-terminal methionine was enzymatically removed from D87N alpha-LA [Veprintsev et al. (1999) PROTEINS: Struct. Funct. Genet., 37, 65-72], the structure appeared to more closely resemble native alpha-LA. Remarkably, the thermal transition mid-temperature of apo-desMetD87N alpha-LA was approximately 31 degrees C versus native apo- alpha-LA (approximately 25 degrees C), probably due to negative charge 'compensation' in the calcium co-ordination site. On the other hand, the transition mid-temperature of Ca(II)-bound desMetD87N alpha-LA was approximately 57 degrees C versus native alpha-LA (approximately 66 degrees C), which was related to a decreased Ca(II) affinity (K = approximately 2.1 x 10(5) versus approximately 1.7 x 10(7)/M at 40 degrees C, respectively). These results reaffirm that alanine substitution in site specific mutagenesis is not always a prudent choice. Substitutions must be conservative with only minimal changes in functional groups and side-chain volume.  相似文献   

8.
Ca(2+) binds to calmodulin (CaM) and triggers the interaction of CaM with its target proteins; CaM binding proteins (CaMBPs) can also regulate the metal binding to CaM. In the present paper, La(3+) binding to CaM was studied in the presence of the CaM binding peptides, Mastoparan (Mas) and Mas X, using ultrafiltration and titration of fluorescence. Ca(2+) binding was used as an analog to understand La(3+) binding in intact CaM and isolated N/C-terminal CaM domain of metal-CaM binary system and metal-CaM-CaMBPs ternary system. Mas/Mas X increased binding affinity of La(3+) to CaM by 0.5 approximately 3 orders magnitude. The metal ions binding affinity to the C-terminal or the N-terminal CaM domain suggested that in the first phase of binding process both Ca(2+) and La(3+) bind to C-terminal of CaM in the presence of Mas/Mas X. In the presence of CaM binding peptides, La(3+) binding preference was substantially altered from the metal-CaM binary system where La(3+) slightly preferred binding to the N-terminal sites of CaM. Our results will be helpful in understanding La(3+) interactions with CaM in the biological systems.  相似文献   

9.
In this paper, the anti-coagulant rodenticide-human serum albumin (HSA) binding was investigated using a perturbation method to calculate the solute distribution isotherms. It was shown that rodenticide can bound either on the benzodiazepine HSA site with low affinity (site I) or on the warfarin HSA site with high affinity (site II). The thermodynamic parameters of this association were calculated for the two HSA binding sites. For the site II, the rodenticide-HSA association was governed enthalpically whereas for the site I, this one was driven entropically. Moreover, the role of the magnesium (Mg(2+)) and calcium (Ca(2+)) on this association was carried out. It was clearly demonstrated that the rodenticide affinity for the site I was not affected by modifying the bulk solvent surface tension whereas for the site II the association constant increased strongly with the Mg(2+) or the Ca(2+) concentration in the bulk solvent. These results showed that the rodenticide-HSA affinity and thus the rodenticide toxicological effect depends on the Mg(2+) or Ca(2+) concentration.  相似文献   

10.
Shen DK  Xu XL  Zhang Y  Song JJ  Yan XC  Guo MC 《Biopolymers》2012,97(10):818-824
Anticoagulation factor II (ACF II), a coagulation factor X- binding protein from the venom of Agkistrodon acutus has both anticoagulant and hypotensive activities. Previous studies show that ACF II binds specifically with activated factor X (FXa) in a Ca(2+) -dependent manner and inhibits intrinsic coagulation pathway. In this study, the inhibition of extrinsic coagulation pathway by ACF II was measured in vivo by prothrombin time assay and the binding of ACF II to factor IX (FIX) was investigated by native polyacrylamide gel electrophoresis and surface plasmon resonance (SPR). The results indicate that ACF II also inhibits extrinsic coagulation pathway, but does not inhibit thrombin activity. ACF II also binds with FIX with high binding affinity in a Ca(2+) -dependent manner and their maximal binding occurs at about 0.1 mM Ca(2+) . ACF II has similar binding affinity to FIX and FX as determined by SPR. Ca(2+) has a slight effect on the secondary structure of FIX as determined by circular dichroism spectroscopy. Ca(2+) ions are required to maintain in vivo function of FIX Gla domain for its recognition of ACF II. However, Ca(2+) at high concentrations (>0.1 mM) inhibits the binding of ACF II to FIX. Ca(2+) functions as a switch for the binding between ACF II and FIX. ACF II extends activated partial thromboplastin time more strongly than prothrombin time, suggesting that the binding of ACF II with FIX may play a dominant role in the anticoagulation of ACF II in vivo.  相似文献   

11.
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase on a 22,000-dalton protein, Phosphorylation is associated with an increase in both the initial rate of Ca2+ uptake and the Ca(2+)-ATPase activity which is partially due to an increase in the affinity of the Ca(2+)-Mg(2+)-ATPase (E) of sarcoplasmic reticulum for calcium. In this study, the effect of cAMP-dependent protein kinase phosphorylation on the binding of calcium to the SR and on the dissociation of calcium from the SR was examined. The rate of dissociation of the E x Ca2 was measured directly and was not found to be significantly altered by cAMP-dependent protein kinase phosphorylation. Since the affinity of the enzyme for Ca2+ is equal to the ratio of the on and off rates of calcium, these results demonstrate that the observed change in affinity must be due to an increase in the rate of calcium binding to the Ca(2+)-Mg(2+)-ATPase of SR. In addition, an increase in the degree of positive cooperativity between the two calcium binding sites was associated with protein kinase phosphorylation.  相似文献   

12.
Calcium vector protein (CaVP) from amphioxus is a two-domain, calcium-binding protein (18.3 kDa) of the calmodulin superfamily. Only two of the four EF-hand motifs (sites III and IV) have a significant binding affinity for calcium ions. We determined the solution structure of the domain containing these active sites (C-CaVP: W81-S161), in the Ca(2+)-saturated state, using NMR spectroscopy and restrained molecular dynamics. The tertiary structure is similar to other Ca(2+)-binding domains containing a pair of EF-hand motifs. The apo state has spectroscopic and thermodynamic characteristics of a molten globule, with conserved secondary structure but highly fluctuating tertiary organization. Titration of C-CaVP with Ca(2+) revealed a stepwise ion binding, with a stable equilibrium intermediate in which only site III binds a calcium ion. Despite a highly fluctuating structure of the free site IV, the calcium-bound site III has a persistent structure, with similar secondary elements but different interhelix angle and hydrophobic packing relative to the fully calcium-saturated state.  相似文献   

13.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

14.
The mechanism of ATP modulation of E2P dephosphorylation of sarcoplasmic reticulum Ca(2+)-ATPase wild type and mutant forms was examined in nucleotide binding studies of states analogous to the various intermediates of the dephosphorylation reaction, obtained by binding of metal fluorides, vanadate, or thapsigargin. Wild type Ca(2+)-ATPase displays an ATP affinity of 4 μM for the E2P ground state analog, 1 μM for the E2P transition state and product state analogs, and 11 μM for the E2 dephosphoenzyme. Hence, ATP binding stabilizes the transition and product states relative to the ground state, thereby explaining the accelerating effect of ATP on dephosphorylation. Replacement of Phe(487) (N-domain) with serine, Arg(560) (N-domain) with leucine, or Arg(174) (A-domain) with alanine or glutamate reduces ATP affinity in all E2/E2P intermediate states. Alanine substitution of Ile(188) (A-domain) increases the ATP affinity, although ATP acceleration of dephosphorylation is disrupted, thus indicating that the critical role of Ile(188) in ATP modulation is mechanistically based rather than being associated with the binding of nucleotide. Mutants with alanine replacement of Lys(205) (A-domain) or Glu(439) (N-domain) exhibit an anomalous inhibition by ATP of E2P dephosphorylation, due to ATP binding increasing the stability of the E2P ground state relative to the transition state. The ATP affinity of Ca(2)E2P, stabilized by inserting four glycines in the A-M1 linker, is similar to that of the E2P ground state, but the Ca(2+)-free E1 state of this mutant exhibits 3 orders of magnitude reduction of ATP affinity.  相似文献   

15.
Censarek P  Beyermann M  Koch KW 《Biochemistry》2002,41(27):8598-8604
An increasing number of proteins are found that are regulated by the Ca(2+)-free state of calmodulin, apocalmodulin. Many of these targets harbor a so-called IQ motif within their primary sequence, but several target proteins of apocalmodulin lack this motif. We investigated whether the Ca(2+)-dependent calmodulin-binding site of nitric oxide synthase I could be transformed into a target site of apocalmodulin. Synthetic peptides representing the wild-type amino acid sequence and several peptides carrying mutations were studied by isothermal titration calorimetry and fluorescence spectroscopy. A single amino acid substitution of a negative charge to a positive charge can convert a classical Ca(2+)-dependent binding site of calmodulin into a target site for apocalmodulin. In addition, the introduction of hydrophobic amino acids increases the apparent binding affinity from the micromolar to the nanomolar range. Binding of wild-type and mutant peptides to Ca(2+)-calmodulin was enthalpically driven, and binding to apocalmodulin was entropically driven. Our data indicate that only a few selected amino acid positions in a calmodulin-binding site determine its Ca(2+) dependency.  相似文献   

16.
The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.  相似文献   

17.
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities. The results from Mg(2+)-Ca(2+) competition experiments show that Ca(2+) can replace Mg(2+) from site I, but not site II, and that Mg(2+) binding affects the affinity for Ca(2+). Furthermore, thermal unfolding circular dichroism data demonstrate that Mg(2+) binding stabilizes the domain. NMR chemical shift perturbations and (15)N relaxation data reveal that Mg(2+)-bound CBD2 adopts a state intermediate between the apo and fully Ca(2+)-loaded forms. Together, the data show that at physiological Mg(2+) concentrations CBD2 is loaded with Mg(2+) preferentially at site II, thereby stabilizing and structuring the domain and altering its affinity for Ca(2+).  相似文献   

19.
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF I, holo-ACF I, and Tb(3+)-reconstituted ACF I in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism. Metal ions were found to increase the structural stability of ACF I against GdnHCl and thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF I and Tb(3+)-ACF I is a two-state process with no detectable intermediate state(s), whereas the GdnHCl-induced unfolding/refolding of holo-ACF I in the presence of 1 mM Ca(2+) follows a three-step transition, with intermediate state a (Ia) and intermediate state b (Ib). Ca(2+) ions play an important role in the stabilization of the Ia and Ib states. The decalcification of holo-ACF I shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, whereas the reconstitution of apo-ACF I with Tb(3+) ions shifts the initial zone of denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.0 M GdnHCl) at which refolding from the fully denatured state of apo-ACF I to the Ib state of holo-ACF I or to the native state of Tb(3+)-ACF I can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF I, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ions-induced refolding provide evidence that the compact Tb(3+)-binding region forms first, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

20.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号