首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed numerical simulation of voluntary contraction of the pelvic floor muscles to evaluate the resulting displacements of the organs and muscles. Structures were segmented in Magnetic Resonance (MR) images. Different material properties and constitutive models were attributed. The Finite Element Method was applied, and displacements were compared with dynamic MRI findings. Numerical simulation showed muscle magnitude displacement ranging from 0 to 7.9 mm, more evident in the posterior area. Accordingly, the anorectum moved more than the uterus and bladder. Dynamic MRI showed less 0.2 mm and 4.1 mm muscle dislocation in the anterior and cranial directions, respectively. Applications of this model include evaluating muscle impairment, subject-specific mesh implant planning, or effectiveness of rehabilitation.  相似文献   

2.
The role of the pelvic floor soft tissues during the second stage of labor, particularly the levator ani muscle, has attracted much interest recently. It has been postulated that the passage of the fetal head through the pelvis may cause excessive stretching of the levator ani muscle, which may lead to pelvic floor dysfunction and pelvic organ prolapse later in life. In order to study the complex biomechanical interactions between the levator ani muscle and the fetal head during the second stage of labor, finite element models have been developed for quantitative analysis of this process. In this study we have simulated vaginal delivery using individual-specific anatomical computer models of the pelvic floor interacting with a fetal head model with minimal restrictions placed upon its motion. Two constitutive relations were considered for the levator ani muscle (of exponential and neo-Hookean forms). For comparison purposes, the exponential relation was chosen to exhibit much greater stiffening at higher strains beyond the range of the experimental data. We demonstrated that increased nonlinearity in the elastic response of the tissues leads to considerably higher (56%) estimated force required for delivery, accompanied by a more homogeneous spatial distribution of maximum principal stretch ratio across the muscle. These results indicate that the form of constitutive relation beyond the presently available experimental data markedly affects the estimated function of the levator ani muscle during vaginal delivery, due to the large strains that occur. Further experimental data at higher strains are necessary in order to more reliably characterize the constitutive behavior required for modeling vaginal childbirth.  相似文献   

3.
The relative levels of pelvic floor muscle (PFM) activation and pressure generated by maximum voluntary PFM contractions were investigated in healthy continent women. The normal sequence of abdominal and PFM activation was determined.Fifteen women performed single and repeated maximum voluntary PFM contractions in supine, sitting and standing. PFM electromyographic (EMG) signals and associated intra-vaginal pressure data were recorded simultaneously. Surface EMG data were recorded from rectus abdominus (RA), external obliques (EO), internal obliques (IO) and transversus abdominus (TA).Abdominal and PFM EMG and intra-vaginal pressure amplitudes generated during voluntary PFM contractions were not different among the positions. Muscle activation sequence differed by position. In supine, EO activation preceded all other muscles by 27 ms (p = 0.043). In sitting, all of the muscles were activated simultaneously. In standing, RA and EO were activated 11 and 17 ms, respectively, prior to the PFMs and TA and IO were activated 10 and 12 ms, respectively, after the PFMs (p  0.001).The results suggest that women are able to perform equally strong PFM contractions in supine, sitting and standing, however the pattern of abdominal and PFM activation varies by position. These differences may be related to position-dependent urine leakage in women with stress incontinence.  相似文献   

4.
5.
The length at which a muscle operates in vivo (operational length) and the length at which it generates maximal force (optimal length) may be quite different. We studied active and passive length-tension characteristics of external anal sphincter (EAS) in vivo and in vitro to determine the optimal and operational length of rabbit EAS. For the in vitro studies, rings of EAS (n = 4) were prepared and studied in a muscle bath under isometric conditions. For in vivo studies, female rabbits (n = 19) were anesthetized and anal canal pressure was recorded by use of a sleeve sensor placed in the custom-designed catheter holders of 4.5-, 6-, and 9-mm diameters. Measurements were obtained at rest and during EAS electrical stimulation. Sarcomere length of EAS muscle was measured by laser diffraction technique with no probe and three probes in the anal canal. In vitro studies revealed 2,054 mN/cm(2) active tension at optimal length. In vivo studies revealed a probe size-dependent increase in anal canal pressure and tension. Maximal increase in anal canal tension with stimulation was recorded with the 9-mm probe. Increases in anal canal tension with increase in probe size were completely abolished by pancuronium bromide. EAS muscle sarcomere length without and with 9-mm probe in the anal canal were 2.11 +/- 0.08 and 2.99 +/- 0.07 microm, respectively. Optimal sarcomere length, based on the thin filament length measured by thin filament analysis, is 2.44 +/- 0.10 microm. These data show that the operational length of EAS is significantly shorter than its optimal length. Our findings provide insight into EAS function and we propose the possibility of increasing anal canal pressure by surgical manipulation of the EAS sarcomere length.  相似文献   

6.
7.
We determined effects of augmented inspiratory and expiratory intrathoracic pressure or abdominal pressure (Pab) excursions on within-breath changes in steady-state femoral venous blood flow (Qfv) and net Qfv during tightly controlled (total breath time = 4 s, duty cycle = 0.5) accessory muscle/"rib cage" (DeltaPab <2 cmH2O) or diaphragmatic (DeltaPab >5 cmH2O) breathing. Selectively augmenting inspiratory intrathoracic pressure excursion during rib cage breathing augmented inspiratory facilitation of Qfv from the resting limb (69% and 89% of all flow occurred during nonloaded and loaded inspiration, respectively); however, net Qfv in the steady state was not altered because of slight reductions in femoral venous return during the ensuing expiratory phase of the breath. Selectively augmenting inspiratory esophageal pressure excursion during a predominantly diaphragmatic breath at rest did not alter within-breath changes in Qfv relative to nonloaded conditions (net retrograde flow = -9 +/- 12% and -4 +/- 9% during nonloaded and loaded inspiration, respectively), supporting the notion that the inferior vena cava is completely collapsed by relatively small increases in gastric pressure. Addition of inspiratory + expiratory loading to diaphragmatic breathing at rest resulted in reversal of within-breath changes in Qfv, such that >90% of all anterograde Qfv occurred during inspiration. Inspiratory + expiratory loading also reduced steady-state Qfv during mild- and moderate-intensity calf contractions compared with inspiratory loading alone. We conclude that 1) exaggerated inspiratory pressure excursions may augment within-breath changes in femoral venous return but do not increase net Qfv in the steady state and 2) active expiration during diaphragmatic breathing reduces the steady-state hyperemic response to dynamic exercise by mechanically impeding venous return from the locomotor limb, which may contribute to exercise limitation in health and disease.  相似文献   

8.
The present study was conducted in order to establish a methodology based on the finite element method to simulate the contraction of the pelvic floor (PF) muscles. In the generated finite element model, a downward pressure of 90 cm H2O was applied, while actively contracting the PF muscles with different degrees of muscular activation (10, 50 and 100%). The finite element methodology of the active contraction behaviour proposed in this study is adequate to simulate PF muscle contraction with different degrees of muscular activation. In this case, in particular, for an activation of 100%, the numerical model was able to displace the pubovisceral muscle in a range of values very similar to the displacement found in the magnetic resonance imaging data. In the analysed case study, it would be possible to conclude that an intensity contraction of 50% would be necessary to produce enough stiffness to avoid possible urine loss.  相似文献   

9.
Contractions evoked by acetylcholine or by tetanic stimulation differed from caffeine contractures, in muscle strips isolated from the longitudinal muscle bands of the body wall of Isostichopus badionotus (Selenka), an aspidochirote holothurian. Tetanic contractions and responses to acetylcholine remained reproducible for hours in sea water or artificial sea water. Caffeine contractures declined rapidly during a series of repetitions, carried out in a bath medium which had a calcium content equivalent to that of sea water. Manganese, lathanum, and dantrolene have been used as calcium antagonists, with the objective of differentiating the calcium stores used in reproducible contractions from the calcium stores used in rapidly extinguishing contractures. Muscle strips were pretreated with an ionophore (X-537A) to confer reproducibility in a series of caffeine contractures, before use of calcium antagonists. For reproducible caffeine contractures, the order of effectiveness of calcium antagonists was lanthanum greater than manganese greater than dantrolene. The order of reversibility was manganese greater than dantrolene greater than lanthanum. For acetylcholine contractions, or tetanic contractions, the order of effectiveness of calcium antagonists was lanthanum greater than manganese and the order of reversibility was manganese greater than lanthanum. Dantrolene reversibility enhanced contractions.  相似文献   

10.
The present study was conducted in order to establish a methodology based on the finite element method to simulate the contraction of the pelvic floor (PF) muscles. In the generated finite element model, a downward pressure of 90 cm H(2)O was applied, while actively contracting the PF muscles with different degrees of muscular activation (10, 50 and 100%). The finite element methodology of the active contraction behaviour proposed in this study is adequate to simulate PF muscle contraction with different degrees of muscular activation. In this case, in particular, for an activation of 100%, the numerical model was able to displace the pubovisceral muscle in a range of values very similar to the displacement found in the magnetic resonance imaging data. In the analysed case study, it would be possible to conclude that an intensity contraction of 50% would be necessary to produce enough stiffness to avoid possible urine loss.  相似文献   

11.
12.
Intramuscular fluid pressures were recorded in the vastus medialis of seven healthy male volunteers. Pressures were measured simultaneously at three different sites in the muscle by a catheter-tip transducer with extremely low volume-displacement characteristics and by two extracorporeal transducers connected to slit catheters. All three recording systems gave qualitatively similar results provided the catheters had inner diameters exceeding 0.53 mm and allowed measurement of pressures lasting as short as 1 s. Wick catheters yielded slower responses than slit catheters. At any position intramuscular fluid pressure increased linearly with force up to maximal voluntary contraction (MVC). However, slopes of these curves varied greatly mainly because the pressure was also a linear function of the distance from the fascia. The highest recorded pressure was 570 Torr. At prolonged submaximal contractions intramuscular fluid pressure oscillated independent of contraction force. The linearity of both the pressure-force relationship and the pressure-depth relationship is compatible with a simple model based on the law of Laplace because the muscle fibers are curved during contraction in this muscle. It is hypothesized that blood flow is first compromised deep in the muscle where pressure is highest and in general at lower stress or tension in short bulging muscles with great curvature of the fibers compared with long slender ones.  相似文献   

13.
The independent force generator and the power-stroke cross-bridge model have dominated the thinking on mechanisms of muscular contraction for nearly the past five decades. Here, we review the evolution of the cross-bridge theory from its origins as a two-state model to the current thinking of a multi-state mechanical model that is tightly coupled with the hydrolysis of ATP. Finally, we emphasize the role of skeletal muscle myosin II as a molecular motor whose actions are greatly influenced by Brownian motion. We briefly consider the conceptual idea of myosin II working as a ratchet rather than a power stroke model, an idea that is explored in detail in the companion paper.  相似文献   

14.
Pelvic floor muscles (PFM) are intimately involved in function of lower urinary tract, the anorectum and sexual functions, therefore their neural control transcends the primarily important somatic innervation of striated muscle, as they are directly involved in “visceral activity”. Neural control of pelvic organs is affected by a unique co-ordination of somatic and autonomic motor nervous systems. Visceral and somatic sensory fibres supply sensory information from pelvic organs; their input influences through central integrative mechanisms also pelvic floor muscle activity. Anatomically, somatic afferent and efferent nerves of the sacral cord segments, reflexly integrated at the spinal cord and brainstem level, conduct neural control of PFM. The inputs from several higher centres influence the complex reflex control and are decisive for voluntary control, and for socially adapted behaviour related to excretory functions.  相似文献   

15.
16.
17.
Femoral arterial pressure-flow relations and vascular impedance were studied during isometric contraction of the gastrocnemius-plantaris muscle group in anesthetized dogs. Contractions were synchronized with the electrocardiogram to occur in the first or second half of the cardiac cycle and included twitches as well as low-, intermediate-, and high-frequency tetanuses. The effects of fatigue and recovery were also documented. Marked changes in pressure and flow waveforms and corresponding femoral arterial input impedance spectra were seen for all contraction modes. Impedance moduli and estimated characteristic impedance were elevated regardless of contraction mode and were associated with fluctuations in impedance phase. All tetanuses placed in the first half of the cardiac cycle produced a striking and consistent reversal of impedance phase for the fundamental harmonic from negative to positive values which decreased with progressive fatigue. During recovery, impedance spectra were unchanged from control spectra. We have demonstrated marked alterations in pressure and flow waveforms and impedance spectral patterns during isometric contraction in the canine hindlimb. These changes may be explained by 1) markedly increased wave reflection as a result of muscle contraction and/or 2) the generation of a retrograde pulse by contracting muscle that fuses with the antegrade pulse of cardiac origin.  相似文献   

18.
19.
The effects of micromolar concentrations of lindane on the mechanical activity of cardiac left ventricular papillary muscles were studied in adult female rats. Lindane decreased the amplitude and duration of the contraction, and slowed down the time course of its ascending phase (i.e. decreased the maximum rate of rise of the initial phase (dC/dt(max))). Both amplitude and duration of the contraction, but not dC/dt(max), were restored by subsequent application of the rapid delayed outward K(+) current (I(Kr)) blocker E-4031 (10 nmol/l). Increasing the stimulation frequency from 1 to 3.3 Hz in the control solution produced a decrease in the amplitude of the first beat peak contraction while a slow recovery phase (srp) developed, as the result of the Na(+)-Ca(2+) exchanger activity. When the frequency was restored to 1 Hz, a post rest potentiation (prp) with a negative staircase (ns) developed due to the sarcoplasmic reticulum (SR) Ca(2+) refilling. Lindane increased the amplitude of both srp and prp, but did not affect ns, which indicates that SR Ca(2+) refilling was not altered by the pesticide. In conclusion, the results strongly suggest that some of the lindane-induced negative inotropic and chronotropic-like effects on the contraction are due to an increased I(Kr) while the decrease in dC/dt(max) (i.e. the rate of cross-bridge formation) results from lindane oxidative properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号