首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years understanding of the role of aldosterone has expanded beyond the known classic effects of promoting renal sodium retention and potassium and magnesium loss. It is now well documented that aldosterone causes myocardial and perivascular fibrosis, blocks the myocardial uptake of norepinephrine, and increases plasminogen activator inhibitor levels. In conjunction with angiotensin II, aldosterone causes vascular damage, endothelial dysfunction, and decreased vascular compliance. Therefore, the renin-angiotensin-aldosterone system (RAAS) plays a major role in the development of both hypertension and heart failure and is therefore, a key target for therapeutic interventions. Commonly prescribed medications for control of hypertension and congestive heart failure are inhibitors of the RAAS, including angiotensin converting enzyme inhibitors (ACE-I) and Angiotensin II (A-II) receptor antagonists. There is a well-documented increase in aldosterone levels that occurs over several months during chronic treatment with an ACE-I or A-II receptor antagonist. Such suppression of circulating aldosterone however, is transient, as exemplified by the term "escape" used to describe the phenomenon. This rebound of aldosterone even occurs when patients receive both an ACE-I and A-II receptor antagonist. In addition, ACE-I and A-II receptor antagonists are less effective in controlling BP in the estimated 60% of hypertensive patients who are salt (volume) sensitive and more prone to hypertension-associated morbidity such as black patients and type 2 diabetics. Thus chronic and complete blockade of aldosterone action requires an aldosterone receptor antagonist. The "Randomized Aldactone Evaluation Study" (RALES) trial results in patients with severe heart failure NYHA class III or IV and a left ventricular ejection fraction of no more than 35 percent showed that administration of a sub-hemodynamic dose of spironolactone (25 mg a day) as an add on therapy to ACE-I plus standard treatment resulted in a significant mortality reduction due both to decreased death from progressive heart failure and sudden cardiac death. These findings support the pivotal role of aldosterone in the pathophysiology of progressive heart failure. Although it is an effective antialdosterone agent, widespread use of spironolactone in humans is limited by its tendency to produce undesirable sexual side effects. At standard doses, impotence and gynaecomastia can be induced in men, whereas pre-menopausal women may experience menstrual disturbances. Data on a selective aldosterone receptor antagonist, eplerenone, appear promising for the effective blockade of aldosterone and its harmful effects without the sexual disturbances of spironolactone. Recently Eplerenone was successfully introduced for the treatment of hypertension and heart failure. Growing number of experimental studies are finding a broader role for Aldosterone in driving the pathophysiology of both heart failure and hypertension. When added to conventional therapy aldosterone receptor blockers show benefits which are in addition to those conferred by ACE-I and/or AII receptor blockers.  相似文献   

2.
3.
The mineralocorticoid (MC) receptor antagonist spironolactone (SL) improves morbidity and mortality in patients with congestive heart failure (CHF). We tested the hypothesis that the central nervous system actions of SL contribute to its beneficial effects. SL (100 ng/h for 28 days) or ethanol vehicle (VEH) was administered intracerebroventricularly or intraperitoneally to rats with CHF induced by coronary artery ligation (CL) and to SHAM-operated controls. The intracerebroventricular SL treatment prevented the increase in sodium appetite and the decreases in sodium and water excretion observed within a week of CL in VEH-treated CHF rats. Intraperitoneal SL also improved volume regulation in the CHF rats, but only after 3 wk of treatment. Four weeks of SL treatment, either intracerebroventricularly or intraperitoneally, ameliorated both the increase in sympathetic drive and the impaired baroreflex function observed in VEH-treated CHF rats. These findings suggest that activation of MC receptors in the central nervous system plays a critical role in the altered volume regulation and augmented sympathetic drive that characterize clinical heart failure.  相似文献   

4.
Atrial fibrillation (AF) is the most common sustained arrhythmia in man. Over the past years, importance of the renin-angiotensin-aldosterone system in AF pathophysiology has been recognized. Lately, the role of aldosterone in AF pathophysiology and mineralocorticoid receptor (MR) antagonism in "upstream" AF treatment is discussed with special regards concerning the effects on AF-induced structural remodeling. However, there is more and more evidence that MR antagonism also influences atrial electrophysiology and, respectively, AF-induced electrical remodeling, whereas the molecular mechanisms are almost unknown. The aim of this mini-review is to give an overview about the role of aldosterone in AF pathophysiology in principle and to summarize current available data concerning affection of cardiac ion channels by aldosterone and MR antagonism. Finally, as modulation of oxidative stress is discussed as one main therapy principle of "upstream" treatment of AF, potential mechanisms how modulation of oxidative stress by aldosterone and accordingly MR antagonism might alter atrial ion currents are delineated. Summarized, publications concerning potential mechanisms of aldosterone- and MR antagonism-modulated cardiac ion channels in various experimental settings are almost exclusively limited to the ventricular level and, partly, they are also contradictorily. Translation of these data to the atria is problematic because atrial and ventricular electrophysiology exhibit remarkable differences. It can be concluded that further research on the "atrial level" is needed in order to clarify the potential impact of the affection of atrial ion channels by aldosterone and accordingly MR antagonism in "upstream" therapy of AF.  相似文献   

5.
The promising concept of cell transplantation and cardiac tissue engineering has been developed in the last few years and focused on strategies attempting to replace dysfunctional, necrotic, and/or apoptotic cardiomyocytes with new cells of mesodermal origin. Transplantation of autologous cells minimizes the risk of neoplasia and avoids immune rejection associated with allogenic or xenogenic cells and recent data hold enormous hopes for short term clinical practices. Tissue engineering represents another promising approach that makes possible the creation of new functional tissues to replace the lost or failing one. Three-dimensional polymeric scaffolds provide the mechanical support for the candidate cells until the formation of cardiac-like tissue prior to surgical repair of the infarcted myocardium. For ultimate clinical applications, further investigations have to select the appropriate cell types, to determine the sufficient number of grafted cells and to provide the long term evaluation of these strategies in the global improvements of cardiac function (neoangiogenesis, synchronous contraction and extracellular matrix remodelling).  相似文献   

6.
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.  相似文献   

7.
Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.  相似文献   

8.
Chronic experiments were carried out on three groups of rats to evaluate tissue and electrolyte effects of a mineralocorticoid blocker canrenoate potassium (SC-14266) during DOCA-induced hypokalemic metabolic alkalosis. Group I animals received DOCA alone, group II received DOCA plus canrenoate, while group III received canrenoate alone. The daily dose ratio (per kilogram of body weight) was 180 mg canrenoate-0.45 mg DOCA. All animals ate a synthetic diet and drank 0.15 N NaHCO3. Group II animals demonstrated a lesser degree of metabolic alkalosis and a higher muscle potassium content when compared with group I rats. The most conspicuous histological abnormality was myocardial necrosis, the degree and extent of which was impressively reduced by the blocking agent.  相似文献   

9.
It is not known how the angiotensin-converting enzyme (ACE) inhibitor and angiotensin II receptor blocker (ARB) attenuate heart failure (HF) in viable ischemic hearts. To assess HF in a rat coronary stenosis (CS) model, we administered vehicle and quinapril or candesartan (or both) orally for 12 wk. Compared with the sham group, the vehicle group showed impaired myocardial perfusion, impaired coronary endothelial nitric oxide (NO) function in vitro, exhausted myocardial mitochondrial respiration, larger left ventricular (LV) dimensions and lower ejection fraction, lower LV rate of pressure development over time (dP/dt), lower slopes of LV end-systolic pressure-dimension relations (ESPDRs), and increased myocardial fibrosis. Treatment with quinapril or candesartan ameliorated these parameters without modifying the epicardial CS severity. Moreover, their combination maintained similar myocardial perfusion, despite a trend toward lower blood pressure, and showed distinctive neurohumoral modulation, normalized mitochondrial respiration, and increased ESPDR slopes. Thus improved myocardial blood flow and coronary flow reserve by quinapril or candesartan are the key to alleviate CS-induced HF, and their combination may have a therapeutic significance partly through ameliorated mitochondrial respiration and improved LV systolic function.  相似文献   

10.
AimsHeart failure is a progressive deterioration in heart function associated with overactivity of the sympathetic nervous system. The benefit of inhibition of sympathetic activity by moxonidine, a centrally acting imidazoline receptor agonist, was questioned based on the outcome of a failing clinical trial. The following studies measured cardiac structure and hemodynamics and mechanisms underlying moxonidine-induced changes, in cardiomyopathic hamsters, where the stage of the disease, dose, and compliance were controlled.Main methodsMale BIO 14.6 hamsters (6 and 10 months old, with moderate and advanced heart failure, respectively) received moxonidine at 2 concentrations: low (2.4 mg/kg/day) and high (9.6 mg/kg/day), or vehicle, subcutaneously, for 1 month. Cardiac function was measured by echocardiography, plasma and hearts were collected for histological determination of fibrosis and apoptosis, as well as for measurement cytokines by Elisa and cardiac proteins by Western blotting.Key findingsCompared to age-matched vehicle-treated BIO 14.6, moxonidine did not reduce blood pressure but significantly reduced heart rate and improved cardiac performance. Moxonidine exerted anti-apoptotic effect with differential inflammatory/anti-inflammatory responses that culminate in attenuated cardiac apoptosis and fibrosis and altered protein expression of collagen types. Some effects were observed regardless of treatment onset, although the changes were more significant in the younger group. Interestingly, moxonidine resulted in upregulation of cardiac imidazoline receptors.SignificanceThese studies imply that in addition to centrally mediated sympathetic inhibition, the effects of moxonidine may, at least in part, be mediated by direct actions on the heart. Further investigation of imidazolines/imidazoline receptors in cardiovascular diseases is warranted.  相似文献   

11.
《Free radical research》2013,47(11):1369-1377
Abstract

The aim was to evaluate the role of the combination of olmesartan, an angiotensin II (Ang II) receptor blocker (ARB), with daunorubicin (DNR) in reducing cardiac toxicity in rats. DNR was administered at a dose of 3 mg/kg/day every other day for 12 days. Olmesartan was administered orally every day for 12 days. Rats treated with DNR alone showed cardiac toxicity as evidenced by worsening cardiac function, elevation of malondialdehyde level in heart tissue and decreased in the level of total glutathione peroxidase activity; treatment with ARB reversed these changes. Furthermore, ARB treatment down-regulated matrix metalloproteinase-2 expression, myocardial expression of Ang II, attenuated the increased protein expressions of p67phox and Nox4 and reduced oxidative stress-induced DNA damage evaluated by expression of 8-hydroxydeoxyguanosine. In conclusion, the result demonstrated that Ang II and oxidative stress play a key role in anthracycline-induced cardiotoxicity and that treatment with ARB will be beneficial against DNR-induced cardiotoxicity.  相似文献   

12.
The effects of captopril, an angiotensin-converting enzyme inhibitor, on congestive heart failure (CHF) were investigated in animal and clinical studies. Congestive heart failure was induced in rats by a combination of pressure and volume overload. Cardiac pressure overload was induced by constricting one renal artery (Goldblatt rat) and volume overload was induced by aorto-caval fistula. Captopril (100 mg/kg/day) was then administered for 14 weeks. Isometric contraction was assessed using isolated left ventricular papillary muscles. The maximum developed tension and the maximum rate of increase in tension (dT/dtmax) were decreased in untreated rats with CHF and improved in captopriltreated rats. The left ventricular myosin isoenzyme pattern was shifted towards V3 in untreated rats with CHF, and was shifted back towards V1 in the captopril-treated rats. In the clinical study, captopril (37.5–75 mg/day) was administered to patients with cardiomyopathy for 12 months. There was no effect on left ventricular mass in hypertrophic cardiomyopathy, although systolic anterior motion of the mitral valve disappeared in one patient. In dilated cardiomyopathy, however, left ventricular mass tended to decrease. These results indicate that captopril has a beneficial effect in congestive heart failure.  相似文献   

13.
14.
Impairment of cardiac function causes renal damage. Renal failure after heart failure is attributed to hemodynamic derangement including reduced renal perfusion and increased venous pressure. One mechanism involves apoptosis and is defined as cardiorenal syndrome type 1. Erythropoietin (EPO) is a cytokine that induces erythropoiesis under hypoxic conditions. Hypoxia inducible factor 1 alpha (HIF-1α) plays a regulatory role in cellular response to hypoxia. Protective effects of EPO on heart, kidney and nervous system are unrelated to red blood cell production. We investigated early changes in and effects of EPO on renal tissues of rats with myocardial infarction by morphology and immunohistochemistry. Coronary artery ligation was used to induce myocardial infarction in Wistar rats. Group 1 comprised sham operated rats; groups 2, 3 and 4 included rats after coronary artery ligation that were sacrificed 6 h after ligation and that were treated with saline, 5,000 U/kg EPO or 10,000 U/kg EPO, respectively; group 5 included rats sacrificed 1 h after ligation. Group 2 showed increased renal tubule damage. Significantly less tubule damage was observed in EPO treated groups. EPO and EPO receptor (EPO-R) immunostaining intensities increased slightly for group 5 and became more intense for group 2. EPO and EPO-R immunostaining was observed in the interstitial area, glomerular cells and tubule epithelial cells of EPO treated groups. HIF-1α immunostaining was observed in collecting tubules in the medulla only in group 2. Caspase-3 immunostaining is an indicator of apoptosis. Caspase-3 staining intensity decreased in renal medulla of EPO treated groups. EPO treatment may exert a protective effect on the renal tissues of patients with cardiorenal syndrome.  相似文献   

15.
We sought to elucidate the relationship between diastolic intraventricular pressure gradients (IVPG) and exercise tolerance in patients with heart failure using color M-mode Doppler. Diastolic dysfunction has been implicated as a cause of low aerobic potential in patients with heart failure. We previously validated a novel method to evaluate diastolic function that involves noninvasive measurement of IVPG using color M-mode Doppler data. Thirty-one patients with heart failure and 15 normal subjects were recruited. Echocardiograms were performed before and after metabolic treadmill stress testing. Color M-mode Doppler was used to determine the diastolic propagation velocity (Vp) and IVPG off-line. Resting diastolic function indexes including myocardial relaxation velocity, Vp, and E/Vp correlated well with VO2max (r = 0.8, 0.5, and -0.5, respectively, P < 0.001 for all). There was a statistically significant increase in Vp and IVPG in both groups after exercise, but the change in IVPG was higher in normal subjects compared with patients with heart failure (2.6 +/- 0.8 vs. 1.1 +/- 0.8 mmHg, P < 0.05). Increase in IVPG correlated with peak VO2max (r = 0.8, P < 0.001) and was the strongest predictor of exercise capacity. Myocardial relaxation is an important determinant of exercise aerobic capacity. In heart failure patients, impaired myocardial relaxation is associated with reduced diastolic suction force during exercise.  相似文献   

16.
17.
Muscle atrophy is a determinant of exercise capacity in heart failure (CHF). Myocyte apoptosis, triggered by tumor necrosis factor- (TNF-) or its second messenger sphingosine (SPH), is one of the causes of atrophy. Growth hormone (GH) improves hemodynamic and cardiac trophism in several experimental models of CHF, but its effect on skeletal muscle in CHF is not yet clear. We tested the hypothesis that GH can prevent skeletal muscle apoptosis in rats with CHF. CHF was induced by injecting monocrotaline. After 2 wk, 2 groups of rats were treated with GH (0.2 mg·kg–1·day–1 and 1.0 mg·kg–1·day–1) subcutaneously. A third group of controls had saline. After 2 additional weeks, rats were killed. Tibialis anterior cross-sectional area, myosin heavy chain (MHC) composition, and a study on myocyte apoptosis and serum levels of TNF- and SPH were carried out. The number of apoptotic nuclei, muscle atrophy, and serum levels of TNF- and SPH were decreased with GH at high but not at low doses compared with CHF rats. Bcl-2 was increased, whereas activated caspases and bax were decreased. The MHC pattern in GH-treated animals was similar to that of controls. Monocrotaline slowed down both contraction and relaxation but did not affect specific tetanic force, whereas absolute force was decreased. GH treatment restored contraction and relaxation to control values and brought muscle mass and absolute twitch and tetanic tension to normal levels. These findings may provide an insight into the therapeutic strategy of GH given to patients with CHF to improve exercise capacity. apoptosis; cytokines; myosin heavy chains  相似文献   

18.
Mihailidou AS  Funder JW 《Steroids》2005,70(5-7):347-351
Fifteen years ago Wehling and colleagues showed unequivocal rapid effects of aldosterone, neither mimicked by cortisol nor blocked by spironolactone, and postulated that these nongenomic effects are mediated via a membrane receptor distinct from the classical mineralocorticoid receptor (MR). Several recent studies have challenged this view. Alzamora et al. showed 11beta-hydroxysteroid denydrogenase 1 and 2 (11betaHSD1, 11betaHSD2) expression in human vascular smooth muscle cells, and that aldosterone rapidly raises intracellular pH via sodium-hydrogen exchange; cortisol is without effect and spironolactone does not block the aldosterone response. When, however, 11betaHSD activity is blocked by carbenoxolone, cortisol shows agonist effects indistinguishable from aldosterone; in addition, the effect of both aldosterone and cortisol is blocked by the open E-ring, water soluble MR antagonist RU28318. In rabbit cardiomyocytes, aldosterone increases intracellular [Na+] by activating Na+/K+/2Cl- cotransport, with secondary effects on Na+/K+ pump activity. Pump current rises approximately 10-fold within 15', is unaffected by actinomycin D or the MR antagonist canrenone, and not elevated by cortisol. Pump current is, however, completely blocked by the open E-ring, water soluble MR antagonist K+ canrenoate and stoichometrically by cortisol. PKCepsilon agonist peptides (but not PKCalpha, PKCdelta or scrambled PKCepsilon peptides) mimic the effect of aldosterone, and PKCepsilon antagonist peptides block the effect. Very recently, cortisol has been shown to mimic the effect of aldosterone when cardiomyocyte redox state is altered by the installation of oxidized glutathione (GSSG) via the pipet, paralleling the effect of carbenoxolone on vascular smooth cells and suggesting possible pathophysiologic roles for an always glucocorticoid occupied MR.  相似文献   

19.
20.
Angiotensin receptor blocker (ARB) and angiotensin-converting enzyme (ACE) inhibitor (ACEI) each act in a different manner to prevent myocardial fibrosis and left ventricular (LV) stiffness in animals with pathways in the heart for generating ANG II as well as ACE. A model of pacing-induced congestive heart failure (CHF) was used to test the central hypothesis that ARB + ACEI prevents myocardial fibrosis and decreases LV stiffness to a greater extent than ARB or ACEI alone. Thirty-five dogs were assigned to the following treatment protocols on the 8th day of a 4-wk pacing schedule: 1) rapid ventricular pacing, 2) ARB (candesartan cilexetil, 1.5 mg.kg(-1).day(-1)) with pacing, 3) ACEI (enalapril, 1.9 mg.kg(-1).day(-1)) with pacing, 4) ARB (candesartan cilexetil, 0.75 mg.kg(-1).day(-1)) + ACEI (enalapril, 0.95 mg.kg(-1).day(-1)) with pacing, and 5) sham operation. The LV stiffness coefficient was significantly increased after rapid pacing but was significantly lower with ARB + ACEI than with ARB or ACEI alone. The collagen volume fraction and mRNA levels of collagen I and III, which were increased by rapid pacing, were significantly lower with ARB + ACEI than with ARB or ACEI alone. Thus ARB + ACEI prevents myocardial fibrosis and decreases LV stiffness during the progression of CHF compared with ARB or ACEI alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号