首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the impact of early diabetes on the circulating and kidney renin-angiotensin system (RAS) in male and female mRen2.Lewis (mRen2) hypertensive rats. Diabetes (DB) was induced by streptozotocin (STZ; 65 mg/kg) at 11 wk of age for 4 wk without insulin replacement. Systolic blood pressures were not increased in DB males or females compared with controls (CON). Circulating angiotensin-converting enzyme 2 (ACE2) increased ninefold (P < 0.05) in DB females and threefold (P < 0.05) in DB males, but circulating ACE and ANG II were higher in the DB groups. Serum C-reactive protein was elevated in DB females but not DB males, and the vascular responses to acetylcholine and estradiol were attenuated in the DB females. Proteinuria, albuminuria, and angiotensinogen excretion increased to a similar extent in both DB females and males. Glomerular VEGF expression also increased to a similar extent in both DB groups. Renal inflammation (CD68(+)cells) increased only in DB females although males exhibited greater inflammation that was not different with DB. Cortical ACE2 did not change in DB females but was reduced (30%) in DB males. Renal neprilysin activity (>75%, P < 0.05) was markedly reduced in the DB females to that in the DB and CON males. ACE activity was significantly lower in both female (75%, P < 0.05) and male (50%; P < 0.05) DB groups, while cortical ANG II and Ang-(1-7) levels were unchanged. In conclusion, female mRen2 rats are not protected from vascular damage, renal inflammation, and kidney injury in early STZ-induced diabetes despite a marked increase in circulating ACE2 and significantly reduced ACE within the kidney.  相似文献   

2.
Nitric oxide (NO) production in therat placenta was monitored and quantified by electron paramagneticresonance (EPR) spectroscopy with hemoglobin and anFe-N-(dithiocarboxy)sarcosine (DTCS) complex as NO-trappingreagents. Expression of nitric oxide synthase (NOS) isoformswas also examined by quantitative RT-PCR analysis. The EPR spectrum ofthe placenta with hemoglobin trapping showed a three-line hyperfinestructure (g = 2.008 and a = 1.66-mT). The EPR signal was diminished after the placenta was homogenized or the NOSinhibitor L-NAME was administered to pregnant rats.Therefore, the specific signal was definitely identified as beingderived from endogenous NO spin-trapped by hemoglobin, and the EPRspectrum showed that the NO adduct existed as a pentacoordinate -NOheme species. The EPR spectrum of the placenta with Fe-DTCS trapping showed a triplet signal (g = 2.038) derived from anNO-Fe-DTCS complex. The height of the triplet signal did not varysignificantly with gestational stage during the last few days ofgestation. At the gestational stages examined, the level of NOS II mRNAexpression was significantly higher than that of NOS III mRNA. NOS IIexpression in term (day 21.5) placenta was significantlyincreased compared with that in preterm (day 19.5) placenta(P < 0.01, n = 4 or 5). These resultssuggest that NOS II is the predominant producer of NO in the placentaand that NOS II-generated NO plays significant roles in the maintenanceof placental functions immediately before birth.

  相似文献   

3.
Cytoskeletal regulation of nitric oxide synthase   总被引:7,自引:0,他引:7  
  相似文献   

4.
Sex differences in blood pressure are evident in experimental models and human subjects, yet the mechanisms underlying this disparity remain equivocal. The current study sought to define the extent of male-female differences in the circulating and tissue renin-angiotensin aldosterone systems (RAASs) of congenic mRen(2). Lewis and control Lewis rats. Male congenics exhibited higher systolic blood pressure than females [200 +/- 4 vs. 146 +/- 7 mmHg, P < 0.01] or Lewis males and females [113 +/- 2 vs. 112 +/- 2 mmHg, P > 0.05]. Plasma ANG II levels were twofold higher in male congenics [47 +/- 3 vs. 19 +/- 3 pM, P < 0.01] and fivefold higher than in male or female Lewis rats [6 +/- 1 vs. 6 +/- 1 pM]. ANG I levels were also highest in the males; however, plasma ANG-(1-7) was higher in female congenics. Male congenics exhibited greater circulating renin and angiotensin-converting enzyme (ACE) activities, as well as angiotensinogen, than female littermates. Renal cortical and medullary ANG II levels were also higher in the male congenics versus all the other groups; ANG I was lower in the males. Cortical ACE2 activity was higher in male congenics, yet neprilysin activity and protein were greater in the females, which may contribute to reduced renal levels of ANG II. These data reveal that sex differences in both the circulating and renal RAAS are apparent primarily in the hypertensive group. The enhanced activity of the RAAS in male congenics may contribute to the higher pressure and tissue injury evident in the strain.  相似文献   

5.
6.
The role of islet constitutive nitric oxide synthase (cNOS) in insulin-releasing mechanisms is controversial. By measuring enzyme activities and protein expression of NOS isoforms [i.e., cNOS and inducible NOS (iNOS)] in islets of Langerhans cells in relation to insulin secretion, we show that glucose dose-dependently stimulates islet activities of both cNOS and iNOS, that cNOS-derived nitric oxide (NO) strongly inhibits glucose-stimulated insulin release, and that short-term hyperglycemia in mice induces islet iNOS activity. Moreover, addition of NO gas or an NO donor inhibited glucose-stimulated insulin release, and different NOS inhibitors effected a potentiation. These effects were evident also in K+-depolarized islets in the presence of the ATP-sensitive K+ channel opener diazoxide. Furthermore, our results emphasize the necessity of measuring islet NOS activity when using NOS inhibitors, because certain concentrations of certain NOS inhibitors might unexpectedly stimulate islet NO production. This is shown by the observation that 0.5 mmol/l of the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) stimulated cNOS activity in parallel with an inhibition of the first phase of glucose-stimulated insulin release in perifused rats islets, whereas 5.0 mmol/l of L-NMMA markedly suppressed cNOS activity concomitant with a great potentiation of the insulin secretory response. The data strongly suggest, but do not definitely prove, that glucose indeed has the ability to stimulate both cNOS and iNOS in the islets and that NO might serve as a negative feedback inhibitor of glucose-stimulated insulin release. The results also suggest that hyperglycemia-evoked islet NOS activity might be one of multiple factors involved in the impairment of glucose-stimulated insulin release in type II diabetes mellitus.  相似文献   

7.
肾髓质诱导型一氧化氮合酶在动脉血压调控中的作用   总被引:3,自引:0,他引:3  
Tan DY  Caramelo C 《生理学报》2000,52(2):103-108
本文通过慢性血液动力学实验,观察了肾髓质局部输入诱导型一氧化酶(iNOS)抑制剂AG(aminoguanidine)对Dahl盐敏感大鼠(DS)、Dahl盐抵抗大鼠(DR)及SD(Sprague Dawley)大鼠动脉血压的影响,并测定了一氧化氮(NO)代谢终产物NO2及NO3含量(UNOX)、iNOS活性、肾功能以及血浆肾素活性(PRA)。结果表明:AG能明显放大高盐(8%)引起的DS及SD大鼠  相似文献   

8.
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38 and -2 are ubiquitously expressed, whereas p38 and - appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38 mRNA expressed at the highest level, followed by p38 and the lowest levels of expression by p382 and -. To determine the functional effects of these proteins on interleukin (IL)-1-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38 and - had minimal effects on iNOS expression, p38 and -2 significantly altered its expression. p38 mutant and p382 wild-type dose dependently inhibited IL-1-induced iNOS expression. These data suggest that p38 and 2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins. TAT proteins; p38 MAPK; inducible nitric oxide synthase; mesangial cell; interleukin-1  相似文献   

9.
Nitric oxide is produced from the amino acid L-arginine by nitric oxide synthase, which has three known isoforms: (1) endothelial nitric oxide synthase and (2) brain nitric oxide synthase, both of which are constitutive nitric oxide synthase; and (3) inducible nitric oxide synthase. The authors' hypothesis is that after reperfusion injury, endothelial cell dysfunction leads to disruption of nitric oxide synthase-mediated nitric oxide production and that this may in part explain the deleterious effects of ischemia-reperfusion injury on tissue survival and blood reflow in flaps. An experiment was designed to study the effects of ischemia-reperfusion injury on the bioactivity of all three isoforms of nitric oxide synthase. Buttock skin flaps and latissimus dorsi myocutaneous flaps were elevated in eight pigs. Flaps on one side of the animal were randomized to receive 6 hours of arterial ischemia, whereas flaps on the other side served as controls. At 6 hours of ischemia and at 1, 4, and 18 hours after reflow, tissue biopsy specimens were obtained and were processed for both constitutive nitric oxide synthase and inducible nitric oxide synthase enzyme activity on the basis of the L-citrulline assay. In addition, specimens were processed for Western blot analysis of the three isoforms. The authors' results revealed three key findings: first, there was a statistically significant (p < 0.001) decrease in constitutive nitric oxide synthase activity of ischemia-reperfusion-injured flaps as compared with controls in both skin and muscle for all time intervals measured. Second, Western blot analyses of endothelial nitric oxide synthase and brain nitric oxide synthase showed a significant decrease in the signal intensity in ischemic and reperfused tissue as compared with controls. Third, the inducible nitric oxide synthase isoform's activity and protein remained undetectable in both tissue types for all time points measured. The authors' data demonstrated that following ischemia-reperfusion injury in the pig flap model there was a disruption of constitutive nitric oxide synthase expression and activity, which may lead to decreased nitric oxide production. The significant decrease in nitric oxide synthase activity found in the current study may partly explain the mechanism of tissue damage in flaps subjected to ischemia-reperfusion injury. Knowledge of the kinetics of nitric oxide synthase activity under conditions of ischemia-reperfusion injury has important implications for the choice and timing of delivery of therapeutic agents whose goal is to increase the bioavailability of nitric oxide in reperfused tissue.  相似文献   

10.
Studies in experimental animals and younger women suggest a protective role for estrogen; however, clinical trials may not substantiate this effect in older females. Therefore, the present study assessed the outcome of ovariectomy in older mRen2. Lewis rats subjected to a high-salt diet for 4 wk. Intact or ovariectomized (OVX, 15 wk of age) mRen2. Lewis rats were aged to 60 wk and then placed on a high-salt (HS, 8% sodium chloride) diet for 4 wk. Systolic blood pressures were similar between groups [OVX 169 +/- 6 vs. Intact 182 +/- 7 mmHg; P = 0.22] after the 4-wk diet; however, proteinuria [OVX 0.8 +/- 0.2 vs. Intact 11.5 +/- 2.6 mg/mg creatinine; P < 0.002, n = 6], renal interstitial fibrosis, glomerular sclerosis, and tubular casts were lower in OVX vs. Intact rats. Kidney injury molecule-1 mRNA, a marker of tubular damage, was 53% lower in the OVX HS group. Independent from blood pressure, OVX HS rats exhibited significantly lower cardiac (24%) and renal (32%) hypertrophy as well as lower C-reactive protein (28%). Circulating insulin-like growth factor-I (IGF-I) levels were not different between the Intact and OVX groups; however, renal cortical IGF-I mRNA and protein were attenuated in OVX rats [P < 0.05, n = 6]. We conclude that ovariectomy in the older female mRen2. Lewis rat conveys protection against salt-dependent increase in renal injury.  相似文献   

11.
Nitric oxide (NO) is a free radical that is largely produced by three isoforms of NO synthase (NOS): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). NO regulates numerous processes in the gastrointestinal tract; however, the overall role that NO plays in intestinal inflammation is unclear. NO is upregulated in both ulcerative colitis and Crohn's disease as well as in animal models of colitis. There have been conflicting reports on whether NO protects or exacerbates injury in colitis or is simply a marker of inflammation. To determine whether the site, timing, and level of NO production modulate the effect on the inflammatory responses, the dextran sodium sulfate model of colitis was assessed in murine lines rendered deficient in iNOS, nNOS, eNOS, or e/nNOS by targeted gene disruption. The loss of nNOS resulted in more severe disease and increased mortality, whereas the loss of eNOS or iNOS was protective. Furthermore, concomitant loss of eNOS reversed the susceptibility found in nNOS-/- mice. Deficiencies in specific NOS isoforms led to distinctive alterations of inflammatory responses, including changes in leukocyte recruitment and alterations in colonic lymphocyte populations. The present studies indicate that NO produced by individual NOS isoforms plays different roles in modulating an inflammatory process.  相似文献   

12.
Dou D  Gao YS 《生理科学进展》2005,36(4):345-348
血管内皮型一氧化氮合酶(eNOS)的调控机制可分为基因表达水平调节和蛋白水平调节两个方面。其中,eNOS的基因表达水平调节主要包含启动子的调节和mRNA的稳定性调节两方面。而eNOS的蛋白水平调节又可分为三个方面:eNOS细胞内转位的调节机制;eNOS复合体形成的调节机制;eNOS氨基酸残基磷酸化的调节机制。eNOS的分子调控机制与临床疾病的发生、发展及其治疗有着密切的关系,故对eNOS分子调控机制的进一步了解有着非常重要的意义。  相似文献   

13.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

14.
To determine the role of nitric oxide (NO) in acute renal failure (ARF), we have studied the time course change activities to activity of nitric oxide synthase (NOS) isoform activities, both calcium dependent and independent NOS, in experimental ischemic ARF. We have also analyzed change activities to activity of the NOS activities in both renal cortex and medulla. Male SD rats (n = 5) were inducted to ARF by ischemia-reperfusion injury and divided into the following groups; Control group (sham operation), Day 0 group, (measurement performed on that day of operation), Day 1 group, (measurement performed one day after induction of ARF), Day 3 group and Day 7 group. Measurement of NOS activity was based on the following principles; NO is synthesized from arginine by nitric oxide synthase (NOS) and NO is converted to NO2 /NO3 (NOx) by oxidation. Detection of the final metabolite of NO, NOx was done using flow injection method (Griess reaction). The results were, (1) calcium dependent NOS activity in the cortex and medulla decreased, however it increased in the recovery period in the renal cortex (Cortex; Control, 0.941 ± 0.765, D0, 0.382 ± 0.271, D1, 0.118 ± 0.353, D3, 2.030 ± 0.235, D7, 3.588 ± 2.706, Medulla; Control, 1.469 ± 0.531, D0, 0.766 ± 0.156, D1, 0.828 ± 0.187, D3, 2.078 ± 0.094, D7, 1.289 ± 0.313 mol NOx produced/mg protein/30 min). (2) On the other hand, iNOS activity increased in the early phase of ARF, both in the cortex and medulla, but returned to control values during the recovery phase in cortex and was maintained at higher levels in the medulla (Cortex; Control, 0.333 ± 0.250, D0, 0.583 ± 0.428, D1, 1.167 ± 0.262, D3, 0.250 ± 0.077, D7, 0.452 ± 0.292, Medulla; Control, 0.139 ± 0.169, D0, 0.279 ± 0.070, D1, 1.140 ± 0.226, D3, 0.452 ± 0.048, D7, 0.625 ± 0.048 mol NOx produced/mg protein/30 min). These findings suggest that the role of NOS in ARF are different for the different NOS isoforms and have anatomic heterogeneity.  相似文献   

15.
The kidney function plays a crucial role in the salt-induced hypertension of genetically salt-sensitive, hypertension-prone rats. We have previously reported that renal xanthine oxidoreductase (XOR) activity is increased in hypertension-prone rats, and even more markedly in salt-induced experimental hypertension. XOR is an enzyme involved in purine metabolism, converting ATP metabolites hypoxanthine and xanthine to uric acid. Because the possible involvement of XOR in nitric oxide metabolism has gained recent interest, we determined renal XOR activity after treating spontaneously hypertensive rats (SHRs), kept on different salt intake levels (0.2, 1.1 and 6.0% of NaCl in the chow), for three weeks with a nitric oxide synthase (NOS) inhibitor, N-omega-nitro-L-arginine methyl ester (L-NAME, 20mg/kg/d). L-NAME treatment induced renal XOR activity by 14 to 37 % (P<0.001), depending on the intake level of salt. Increased salt intake was no more able to aggravate L-NAME induced hypertension, but it did further increase the renal XOR activity (p<0.05). Treatment of SHRs with a nitric oxide donor, isosorbide-5-mononitrate (60-70 mg/kg/d for 8 weeks), markedly attenuated the salt-enhanced hypertension without a clear effect on renal XOR activity. Thus, the results indicate that the NO concentration needed to inhibit XOR is supra-physiological, and suggest that renal NO production is not impaired in the SHR model of hypertension.  相似文献   

16.
Increased nitric oxide synthase expression in aorta of cirrhotic rats.   总被引:2,自引:0,他引:2  
H Liu  D Song  S S Lee 《Life sciences》1999,64(19):1753-1759
  相似文献   

17.
Abstract

Nitric oxide (NO) has emerged as an important intra-ovarian regulatory factor. We investigated effects of low dose capsaicin (CAP) treatment on the different NOS isoforms in prepubertal rat ovaries. Fifteen 21-day-old female Sprague-Dawley rats were divided randomly into three groups. The first group received no treatment, the second group received 0.5 mg/kg/day CAP dissolved in the vehicle, and the third group was treated with the vehicle only. The animals were euthanized by ether inhalation after 15 days and their ovaries were excised. Ovaries were fixed in 10% neutral buffered formalin and embedded in paraffin. Sections were processed for standard immunohistochemistry using the labeled streptavidin-biotin technique for expression of nNOS, eNOS and iNOS. We demonstrated that CAP induced expression of NOS isotypes including eNOS, iNOS and nNOS in prepubertal rat ovaries. CAP may lead to release of NO either directly from nerves or indirectly by evoking release from other cells via the action of neuropeptides that are released from afferent terminals and are involved in regulating female reproductive function.  相似文献   

18.
Crystal structures of human endothelial nitric oxide synthase (eNOS) and human inducible NOS (iNOS) catalytic domains were solved in complex with the arginine substrate and an inhibitor S-ethylisothiourea (SEITU), respectively. The small molecules bind in a narrow cleft within the larger active-site cavity containing heme and tetrahydrobiopterin. Both are hydrogen-bonded to a conserved glutamate (eNOS E361, iNOS E377). The active-site residues of iNOS and eNOS are nearly identical. Nevertheless, structural comparisons provide a basis for design of isozyme-selective inhibitors. The high-resolution, refined structures of eNOS (2.4 A resolution) and iNOS (2.25 A resolution) reveal an unexpected structural zinc situated at the intermolecular interface and coordinated by four cysteines, two from each monomer.  相似文献   

19.
Nitric oxide (NO) has emerged as an important intra-ovarian regulatory factor. We investigated effects of low dose capsaicin (CAP) treatment on the different NOS isoforms in prepubertal rat ovaries. Fifteen 21-day-old female Sprague-Dawley rats were divided randomly into three groups. The first group received no treatment, the second group received 0.5 mg/kg/day CAP dissolved in the vehicle, and the third group was treated with the vehicle only. The animals were euthanized by ether inhalation after 15 days and their ovaries were excised. Ovaries were fixed in 10% neutral buffered formalin and embedded in paraffin. Sections were processed for standard immunohistochemistry using the labeled streptavidin-biotin technique for expression of nNOS, eNOS and iNOS. We demonstrated that CAP induced expression of NOS isotypes including eNOS, iNOS and nNOS in prepubertal rat ovaries. CAP may lead to release of NO either directly from nerves or indirectly by evoking release from other cells via the action of neuropeptides that are released from afferent terminals and are involved in regulating female reproductive function.  相似文献   

20.
Hussain, Sabah N. A., Qasim El-Dwairi, Mohammed N. Abdul-Hussain, and Dalia Sakkal. Expression of nitric oxidesynthase isoforms in normal ventilatory and limb muscles.J. Appl. Physiol. 83(2): 348-353, 1997.Nitric oxide (NO), an important messenger molecule withwidespread actions, is synthesized by NO synthases (NOS). In thisstudy, we investigated the correlation between fiber type and NOSactivity among ventilatory and limb muscles of various species. We alsoassessed the presence of the three NOS isoforms in normal skeletalmuscles and how various NOS inhibitors influence muscle NOS activity.NOS activity was detected in various muscles; however, NOS activity inrabbits and rats varied significantly among different muscles.Immunoblotting of muscle samples indicated the presence of both theneuronal NOS and the endothelial NOS isoforms but not thecytokine-inducible NOS isoform. However, these isoforms were expressedto different degrees in various muscles. Although the neuronal NOSisoform was detectable in the canine diaphragm, very weak expressionwas detected in rabbit, rat, and mouse diaphragms. The endothelial NOSisoform was detected in the rat and mouse diaphragms but not in thecanine and rabbit diaphragms. We also found thatNG-nitro-L-arginine methyl ester,7-nitroindazole, andS-methylisothiourea werestronger inhibitors of muscle NOS activity than was aminoguanidine. These results indicate the presence of different degrees ofconstitutive NOS expression in normal ventilatory and limb muscles ofvarious species. Our data also indicate that muscle NOS activity is not determined by fiber type distribution but by other not yet identified factors. The functional significance of this expression remains to beassessed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号