首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
Effects of membrane lipids on ion channel structure and function   总被引:9,自引:0,他引:9  
Biologic membranes are not simply inert physical barriers, but complex and dynamic environments that affect membrane protein structure and function. Residing within these environments, ion channels control the flux of ions across the membrane through conformational changes that allow transient ion flux through a central pore. These conformational changes may be modulated by changes in transmembrane electrochemical potential, the binding of small ligands or other proteins, or changes in the local lipid environment. Ion channels play fundamental roles in cellular function and, in higher eukaryotes, are the primary means of intercellular signaling, especially between excitable cells such as neurons. The focus of this review is to examine how the composition of the bilayer affects ion channel structure and function. This is an important consideration because the bilayer composition varies greatly in different cell types and in different organellar membranes. Even within a membrane, the lipid composition differs between the inner and outer leaflets, and the composition within a given leaflet is both heterogeneous and highly dynamic. Differential packing of lipids (and proteins) leads to the formation of microdomains, and lateral diffusion of these microdomains or "lipid rafts" serve as mobile platforms for the clustering and organization of bilayer constituents including ion channels. The structure and function of these channels are sensitive to specific chemical interactions with neighboring components of the membrane and also to the biophysical properties of their membrane microenvironment (e.g., fluidity, lateral pressure profile, and bilayer thickness). As specific examples, we have focused on the K+ ion channels and the ligand-gated nicotinicoid receptors, two classes of ion channels that have been well-characterized structurally and functionally. The responsiveness of these ion channels to changes in the lipid environment illustrate how ion channels, and more generally, any membrane protein, may be regulated via cellular control of membrane composition.  相似文献   

2.
Regardless of the nature of the protein constituents of membranes, the molecular arrangement of lipids interacting with them must satisfy hydrophobic, ionic, and steric requirements. Biological membranes have a great diversity of lipid constituents, and this diversity might have functional roles. It has been proposed, for example, that the hydrophobic regions of membrane proteins are stabilized in the membrane through interactions with lipids able to adopt configurations other than the bilayer structure. Progress in understanding at the molecular level how lipid-protein interactions control the properties of membrane proteins has been hindered by the lack of information concerning the structure of the hydrophobic regions of membrane proteins. Nevertheless, there are many examples in the literature describing how changes in the lipid environment affect physical and biochemical properties of membrane proteins. From these studies, discussed in this review, an overall picture of how lipids and proteins interact in membranes is beginning to emerge.  相似文献   

3.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

4.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

5.
During peroxisomal matrix protein import, the peroxisomal targeting signal receptors recognize cargo in the cytosol and interact with docking and translocation subcomplexes on the peroxisomal membrane. Using immunoprecipitations of multiple protein components, we show that in Pichia pastoris the docking subcomplex consists of the unique peroxins Pex13p, Pex14p and Pex17p, whereas the putative translocation subcomplex has all three RING-finger peroxins, Pex2p, Pex10p and Pex12p, as unique constituents. We identify Pex3p as a shared component of both subcomplexes. In pex3Δ cells, the unique constituents of the docking subcomplex interact as they do in wild-type cells, but the assembly of the translocation subcomplex is impaired and its components are present at reduced levels. Furthermore, several interactions detected in wild-type cells between translocation and docking subcomplex components are undetectable in pex3Δ cells. Contrary to previous reports, pex3Δ cells have peroxisome remnants that pellet during high-speed centrifugation, associate with membranes on floatation gradients and can be visualized by deconvolution microscopy using antibodies to several peroxins which were not available earlier. We discuss roles for Pex3p in the assembly of specific peroxisomal membrane protein subcomplexes whose formation is necessary for matrix protein import.  相似文献   

6.
Characterization of membranes and of biological processes occurring within membranes is essential for understanding fundamental cellular behavior. Here we present a detailed biophysical study of a recently developed colorimetric biomimetic membrane assembly constructed from physiological lipid molecules and conjugated polydiacetylene. Various analytical techniques have been applied to characterize the organization of the lipid components in the chromatic vesicles and their contributions to the observed blue-to-red color transitions. Experiments reveal that both the polymerized units as well as the lipids exhibit microscopic phases and form domains whose properties and bilayer organization are interdependent. These domains are interspersed within mixed lipid/polymer vesicles that have a size distribution different from those of aggregates of the individual molecular constituents. The finding that fluidity changes induced within the lipid domains are correlated with the chromatic transitions demonstrates that the colorimetric platform can be used to evaluate the effects of individual molecular components, such as negatively charged lipids and cholesterol, upon membrane fluidity and thermal stability.  相似文献   

7.
Highly purified peroxisomes from the yeast Pichia pastoris grown on methanol or oleic acid, respectively, were used to characterize the lipid composition of this organelle. For this purpose, an isolation procedure had to be adapted which yielded highly purified P. pastoris peroxisomes. When peroxisome proliferation was induced by growth on methanol, alcohol oxidase was the predominant peroxisomal protein. Cultivation of P. pastoris on oleic acid led to induction of a family of peroxisomal enzymes catalyzing fatty acid beta-oxidation, whose most prominent members were identified by mass spectrometry. On either carbon source, phosphatidylcholine and phosphatidylethanolamine were the major peroxisomal phospholipids, and cardiolipin was present in peroxisomal membranes at a substantial amount, indicating that this phospholipid is a true peroxisomal component. Ergosterol was the most abundant sterol of P. pastoris peroxisomal membranes irrespective of the culture conditions. The fatty acid composition of whole cells and peroxisomes was highly affected by cultivation of P. pastoris on oleic acid. Under these conditions, oleic acid became the predominant fatty acid in phospholipids from total cell and peroxisomal extracts. Thus, oleic acid was not only utilized as an appropriate carbon source but also as a building block for complex membrane lipids. In summary, our data provide first insight into biochemical properties of P. pastoris peroxisomal membranes, which may become important for the biotechnological use of this yeast.  相似文献   

8.
Methods for efficient cyclodextrin-induced lipid exchange have been developed in our lab. These make it possible to almost completely replace the lipids in the outer leaflet of artificial membranes or the plasma membranes of living cells with exogenous lipids. Lipid replacement/substitution allows detailed studies of how lipid composition and asymmetry influence the structure and function of membrane domains and membrane proteins. In this review, we both summarize progress on cyclodextrin exchange in cells, mainly by the use of methyl-alpha cyclodextrin to exchange phospholipids and sphingolipids, and discuss the issues to consider when carrying out lipid exchange experiments upon cells. Issues that impact interpretation of lipid exchange are also discussed. This includes how overly naïve interpretation of how lipid exchange-induced changes in domain formation can impact protein function.  相似文献   

9.
The peroxisomal compartment in mouse liver was investigated using rate sedimentation of liver subfractions on sucrose density gradients. Treatment of mice with clofibrate, a hypolipidemic agent and peroxisome proliferator, resulted in the formation of small particles which were devoid of catalase and urate oxidase, but which were identified as peroxisomal on the basis of content of the clofibrate-induced peroxisomal beta-oxidation enzymes (fatty acyl-CoA oxidase, hydratase/dehydrogenase bifunctional protein, and thiolase) and the 68 kDa peroxisomal integral membrane protein. Immunoelectron microscopy confirmed the membrane-bound organellar nature and enzyme composition of these particles. These particles were absent in normal mice, and were increased to a maximal level within 2 days of clofibrate treatment. These data have been taken as indicative of a role of these particles in the mechanism of drug-induced peroxisome proliferation.  相似文献   

10.
Investigations were carried out on the effect of plasma membrane lipid modifications on the fusogenic capacity of control and ras-transformed fibroblasts. The plasma membrane lipid composition was modified by treatment of cells with exogenous phospholipases C and D, sphingomyelinase and cyclodextrin. The used enzymes hydrolyzed definite membrane lipids thus inducing specific modifications of the lipid composition while cyclodextrin treatment reduced significantly the level of cholesterol. The cells with modified membranes were used for assessment of their fusogenic capacity with model membranes with a constant lipid composition. Treatment with phospholipases C and D stimulated the fusogenic potential of both cell lines whereas the specific reduction of either sphingomyelin or cholesterol induced the opposite effect. The results showed that all modifications of the plasma membrane lipid composition affected the fusogenic capacity irrespective of the initial differences in the membrane lipid composition of the two cell lines. These results support the notion that the lipid composition plays a significant role in the processes of membrane-membrane fusion. This role could be either direct or through modulation of the activity of specific proteins which regulate membrane fusion.  相似文献   

11.
Proteins and lipids are heterogeneously distributed in biological membranes. The correct function of membrane proteins depends on spatiotemporal organization into defined membrane areas, called lipid domains or rafts. Lipid microdomains are therefore thought to assist compartmentalization of membranes. However, how lipid and protein assemblies are organized and whether proteins are actively involved in these processes remains poorly understood. We now have identified flotillins to be responsible for lateral segregation of defined membrane domains in the model organism Bacillus subtilis. We show that flotillins form large, dynamic assemblies that are able to influence membrane fluidity and prevent condensation of Laurdan stained membrane regions. Absence of flotillins in vivo leads to coalescence of distinct domains of high membrane order and, hence, loss of flotillins in the bacterial plasma‐membrane reduces membrane heterogeneity. We show that flotillins interact with various proteins involved in protein secretion, cell wall metabolism, transport and membrane‐related signalling processes. Importantly, maintenance of membrane heterogeneity is critical for vital cellular processes such as protein secretion.  相似文献   

12.
Our understanding of the plasma membrane structure has undergone a major change since the proposal of the fluid mosaic model of Singer and Nicholson in the 1970s. In this model, the membrane, composed of over thousand lipid and protein species, is organized as a well‐equilibrated two‐dimensional fluid. Here, the distribution of lipids is largely expected to reflect a multicomponent system, and proteins are expected to be surrounded by an annulus of specialized lipid species. With the recognition that a multicomponent lipid membrane is capable of phase segregation, the membrane is expected to appear as patchwork quilt pattern of membrane domains. However, the constituents of a living membrane are far from being well equilibrated. The living cell membrane actively maintains a trans‐bilayer asymmetry of composition, and its constituents are subject to a number of dynamic processes due to synthesis, lipid transfer as well as membrane traffic and turnover. Moreover, membrane constituents engage with the dynamic cytoskeleton of a living cell, and are both passively as well as actively manipulated by this engagement. The extracellular matrix and associated elements also interact with membrane proteins contributing to another layer of interaction. At the nano‐ and mesoscale, the organization of lipids and proteins emerge from these encounters, as well as from protein–protein, protein–lipid, and lipid–lipid interactions in the membrane. New methods to study the organization of membrane components at these scales have also been developed, and provide an opportunity to synthesize a new picture of the living cell surface as an active membrane composite.  相似文献   

13.
Membrane lipids: where they are and how they behave   总被引:1,自引:0,他引:1  
Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?  相似文献   

14.
15.
《Biophysical journal》2021,120(17):3718-3731
The collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport: lipid desorption, which is rate limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.  相似文献   

16.
The fusion of biological membranes is governed by the carefully orchestrated interplay of membrane proteins and lipids. Recently determined structures of fusion proteins, individual domains of fusion proteins and their complexes with regulatory proteins and membrane lipids have yielded much suggestive insight into how viral and intracellular membrane fusion might proceed. These structures may be combined with new knowledge on the fusion of pure lipid bilayer membranes in an attempt to begin to piece together the complex puzzle of how biological membrane fusion machines operate on membranes.  相似文献   

17.
The PEX11 peroxisomal membrane proteins are the only factors known to promote peroxisome division in multiple species. It has been proposed that PEX11 proteins have a direct role in peroxisomal fatty acid oxidation, and that they only affect peroxisome abundance indirectly. Here we show that PEX11 proteins are unique in their ability to promote peroxisome division, and that PEX11 overexpression promotes peroxisome division in the absence of peroxisomal metabolic activity. We also observed that mouse cells lacking PEX11beta display reduced peroxisome abundance, even in the absence of peroxisomal metabolic substrates, and that PEX11beta(-/-) mice are partially deficient in two distinct peroxisomal metabolic pathways, ether lipid synthesis and very long chain fatty acid oxidation. Based on these and other observations, we propose that PEX11 proteins act directly in peroxisome division, and that their loss has indirect effects on peroxisome metabolism.  相似文献   

18.
Lipid rafts and caveolae play a pivotal role in organization of signaling by TLR4 and several other immune receptors. Beyond the simple cataloguing of signaling events compartmentalized by these membrane microdomains, recent studies have revealed the surprisingly central importance of dynamic remodeling of membrane lipid domains to immune signaling. Simple interventions upon membrane lipid, such as changes in cholesterol loading or crosslinking of raft lipids, are sufficient to induce micrometer-scale reordering of membranes and their protein cargo with consequent signal transduction. In this review, using TLR signaling in the macrophage as a central focus, we discuss emerging evidence that environmental and genetic perturbations of membrane lipid regulate protein signaling, illustrate how homeostatic flow of cholesterol and other lipids through rafts regulates the innate immune response, and highlight recent attempts to harness these insights toward therapeutic development.  相似文献   

19.
Structural and functional aspects of peroxisomal membranes in yeasts   总被引:1,自引:0,他引:1  
Abstract: The peroxisomal membrane compartmentalizes specific metabolic functions in the intermediary metabolism of various aerobic eukarya. In yeast, peroxisomal membranes are typified by their small width (±7–8 nm) and absence of large integral membrane proteins in freeze-etch replicas. They show a unique polypeptide profile which, in contrast to their phospholipid composition, differs from that of other membranes in the cell. Part of these proteins are substrate- inducible and are probably related to specific peroxisomal function(s). In vivo, the observed proton motive force across the peroxisomal membrane may play a role in the function of the organelle in that it contributes to the driving force required for selective transport of various enzyme substrates and/or metabolic intermediates. To date only few peroxisomal membrane proteins (PMPs) have been functionally characterized. A major constitutive 31-kDa PMP present in the peroxisomal membrane of Hansenula polymorpha has been purified and was shown to display poreforming properties. In addition, a peroxisomal H+-ATPase has been identified which most probably is involved in the generation/maintenance of the in vivo pH gradient across the peroxisomal membrane. Other functions of peroxisomal membrane proteins remain obscure although the first genes encoding yeast PMPs are now being cloned and sequenced. Studies on peroxisome-deficient yeast mutants revealed that specific peroxisome functions are strictly dependent on the intactness of the peroxisomal membrane. In this contribution several examples are presented of metabolic disorders due to peroxisomal malfunction in yeast.  相似文献   

20.
The special physical and functional properties ascribed to lipid rafts in biological membranes reflect their distinctive organization and composition, properties that are hypothesized to rest in part on the differential partitioning of various membrane components between liquid-ordered and liquid-disordered lipid environments. This review describes the principles and findings of recently developed methods to monitor the partitioning of membrane proteins and lipids between liquid-ordered and liquid-disordered domains in model membranes, and how these approaches can aid in elucidating the properties of rafts in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号