首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously shown that the heterodimer CD98/LAT-2 (LAT-2: amino acid transporter) is expressed in the basolateral membrane of intestinal epithelia and is associated with beta1 integrin (Merlin, D., Sitaraman, S., Liu, X., Easterburn, K., Sun, J., Kucharzik, T., Lewis, B., and Madara, J. L. (2001) J. Biol. Chem. 276, 39282-39289). In the present study we examined the interaction of CD98/LAT2 with intracellular adhesion molecule I (ICAM-1) and the potential of such interaction on the activation of intracellular signal in Caco2-BBE cell monolayers. ICAM-1 was found to be expressed to the basolateral domain and to selectively coimmunoprecipitate with CD98/LAT-2 in Caco2-BBE monolayers. Using antibodies as ligands to CD98 and ICAM-1, we demonstrate that the basolateral cross-linking of CD98 and ICAM-1 differentially affects the intrinsic activity of the LAT-2 transporter. Whereas CD98 ligation decreases the Km and Vm of the LAT-2 transporter, ICAM-1 ligation increases Km and Vm of the amino acid transporter LAT-2. In addition, basolateral cross-linking of CD98 or ICAM-1 induces threonine phosphorylation of an approximately 160-kDa supramolecular complex that is consistent with CD98/LAT-2-ICAM-1 complex. Together these findings demonstrate that (i). CD98/LAT-2 interacts with ICAM-1 in Caco2-BBE cell monolayers, and (ii). CD98 and ICAM-1 ligands generate intracellular signals that regulate the amino acids transporter (LAT-2) activity. Our data provide a novel mechanism by which events such as adhesion may be integrated by amino acid transport activity resulting from the direct interaction of cell surface molecules such as CD98 and ICAM-1.  相似文献   

3.
4.
5.
6.
7.
8.
IL-6 induces NF-kappa B activation in the intestinal epithelia   总被引:8,自引:0,他引:8  
IL-6 is a potent proinflammatory cytokine that has been shown to play an important role in the pathogenesis of inflammatory bowel disease (IBD). It is classically known to activate gene expression via the STAT-3 pathway. Given the crucial role of IL-6 in the pathogenesis of chronic intestinal inflammation, it is not known whether IL-6 activates NF-kappaB, a central mediator of intestinal inflammation. The model intestinal epithelial cell line, Caco2-BBE, was used to study IL-6 signaling and to analyze whether suppressor of cytokine signaling 3 (SOCS-3) proteins play a role in the negative regulation of IL-6 signaling. We show that IL-6 receptors are present in intestinal epithelia in a polarized fashion. Basolateral IL-6 and, to a lesser extent, apical IL-6 induces the activation of the NF-kappaB pathway. Basolateral IL-6 stimulation results in a maximal induction of NF-kappaB activation and NF-kappaB nuclear translocation at 2 h. IL-6 induces polarized expression of ICAM-1, an adhesion molecule shown to be important in the neutrophil-epithelial interactions in IBD. Using various deletion constructs of ICAM-1 promoter, we show that ICAM-1 induction by IL-6 requires the activation of NF-kappaB. We also demonstrate that overexpression of SOCS-3, a protein known to inhibit STAT activation in response to IL-6, down-regulates IL-6-induced NF-kappaB activation and ICAM-1 expression. In summary, we demonstrate the activation of NF-kappaB by IL-6 in intestinal epithelia and the down-regulation of NF-kappaB induction by SOCS-3. These data may have mechanistic and therapeutic implications in diseases such as IBD and rheumatoid arthritis in which IL-6 plays an important role in the pathogenesis.  相似文献   

9.
In the intestine, butyrate constitutes the major energy fuel for colonocytes. However, little is known about the transport of butyrate and its regulation in the intestine. In this study we demonstrate that the monocarboxylate transporter (MCT-1) is apically polarized in model human intestinal epithelia and is involved in butyrate uptake by Caco2-BBE cell monolayers. The butyrate uptake by Caco2-BBE cell monolayers displayed conventional Michaelis-Menten kinetics and was found to be pH-dependent, Na(+)-independent, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-insensitive, and inhibited by the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamate and by an excess of unlabeled butyrate. We show that MCT-1 associates with CD147 at the apical plasma membrane in Caco2-BBE cell monolayers. Using antisense CD147, we demonstrate that the association of CD147 with MCT-1 is critical for the butyrate transport activity. Interestingly, we show for the first time hormonal regulation of CD147/MCT-1 mediated butyrate uptake. Specifically, luminal leptin significantly up-regulates MCT-1-mediated butyrate uptake by increasing its maximal velocity (V(max)) without any modification in the apparent Michaelis-Menten constant (K(m)). Finally, we show that luminal leptin up-regulates butyrate uptake in Caco2-BBE monolayers by two distinct actions: (i) increase of the intracellular pool of MCT-1 protein without affecting CD147 expression and (ii) translocation of CD147/MCT-1 to the apical plasma membrane of Caco2-BBE cell monolayers.  相似文献   

10.
Ecto-phosphorylation plays an important role in many cellular functions. The transmembrane glycoprotein CD98 contains potential phosphorylation sites in its extracellular C-terminal tail. We hypothesized that extracellular signaling through ecto-protein kinases (ePKs) might lead to ecto-phosphorylation of CD98 and influence its multiple functions, including its role in cell-cell interactions. Our results show that recombinant CD98 was phosphorylated in vitro by ePKs from Jurkat cells and by the commercial casein kinase 2 (CK2). Alanine substitutions at serines-305/307/309 or serines-426/430 attenuated CK2-mediated CD98 phosphorylation, suggesting that these residues are the dominant phosphorylation sites for CK2. Furthermore, CD98 expressed in the basolateral membranes of intestinal epithelial Caco2-BBE cells was ecto-phosphorylated by Jurkat cell-derived ePKs and ecto-CK2 was involved in this process. Importantly, cell attachment studies showed that the ecto-phosphorylation of CD98 enhanced heterotypic cell-cell interactions and that the extracellular domain of CD98, which possesses the serine phosphorylation sites, was crucial for this effect. In addition, phosphorylation of recombinant CD98 increased its interactions with Jurkat and Caco2-BBE cells, and promoted cell attachment and spreading. In conclusion, here we demonstrated the ecto-phosphorylation of CD98 by ePKs and its functional importance in cell-cell interactions. Our findings reveal a novel mechanism involved in regulating the multiple functions of CD98 and raise CD98 as a promising target for therapeutic modulations of cell-cell interactions.  相似文献   

11.
12.
13.
14.
The patients with Crohn's disease (CD) have a 'leaky gut' manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-alpha (TNF-alpha) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-alpha is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-alpha increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-alpha-induced increase in MLCK gene activity. By progressive 5' deletion, minimal MLCK promoter was localized between -313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-alpha-induced increase in MLCK promoter activity was mediated by NF-kappaB activation. There were eight kappaB binding sites on MLCK promoter. The NF-kappaB1 site at +48 to +57 mediated TNF-alpha-induced increase in MLCK promoter activity. The NF-kappaB2 site at -325 to -316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-kappaB dimer type binding to the kappaB sites. p50/p65 dimer preferentially binds to the NF-kappaB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-kappaB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-alpha-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-alpha-induced modulation of MLCK gene activity.  相似文献   

15.
16.
The disintegrin metalloproteases (or ADAMs) are membrane-anchored glycoproteins that have been implicated in cell-cell or cell-matrix interactions and in proteolysis of molecules on the cell surface. The expression and/or the pathophysiological implications of ADAMs are not known in intestinal epithelial cells. Therefore, our aim was to investigate the expression and the role of ADAMs in intestinal epithelial cells. Expression of ADAMs was assessed by RT-PCR, Western blot analysis, and immunufluorescence experiments. Wound-healing experiments were performed by using the electric cell substrate impedence sensing technology. Our results showed that ADAMs-10, -12, and -15 mRNA are expressed in the colonic human cell lines Caco2-BBE and HT29-Cl.19A. An ADAM-15 complementary DNA cloned from Caco2-BBE poly(A)+ RNA, and encompassing the entire coding region, was found to be shorter and to present a different region encoding the cytoplasmic tail compared with ADAM-15 sequence deposited in the database. In Caco2-BBE cells and colonic epithelial cells, ADAM-15 protein was found in the apical, basolateral, and intracellular compartments. We also showed that the overexpression of ADAM-15 reduced cell migration in a wound-healing assay in Caco2-BBE monolayers. Our data show that 1) ADAM-15 is expressed in human intestinal epithelia, 2) a new variant of ADAM-15 is expressed in a human intestinal epithelial cell line, and 3) ADAM-15 is involved in intestinal epithelial cells wound-healing processes. Together, these results suggest that ADAM-15 may have important pathophysiological roles in intestinal cells.  相似文献   

17.
Intestinal epithelial cells respond to inflammatory extracellular stimuli by activating mitogen activated protein kinase (MAPK) signaling, which mediates numerous pathophysiological effects, including intestinal inflammation. Here, we show that a novel isoform of SPS1-related proline alanine-rich kinase (SPAK/STE20) is involved in this inflammatory signaling cascade. We cloned and characterized a SPAK isoform from inflamed colon tissue, and found that this SPAK isoform lacked the characteristic PAPA box and alphaF loop found in SPAK. Based on genomic sequence analysis the lack of PAPA box and alphaF loop in colonic SPAK isoform was the result of specific splicing that affect exon 1 and exon 7 of the SPAK gene. The SPAK isoform was found in inflamed and non-inflamed colon tissues as well as Caco2-BBE cells, but not in other tissues, such as liver, spleen, brain, prostate and kidney. In vitro analyses demonstrated that the SPAK isoform possessed serine/threonine kinase activity, which could be abolished by a substitution of isoleucine for the lysine at position 34 in the ATP-binding site of the catalytic domain. Treatment of Caco2-BBE cells with the pro-inflammatory cytokine, interferon gamma, induced expression of the SPAK isoform. Over-expression of the SPAK isoform in Caco2-BBE cells led to nuclear translocation of an N-terminal fragment of the SPAK isoform, as well as activation of p38 MAP kinase signaling cascades and increased intestinal barrier permeability. These findings collectively suggest that pro-inflammatory cytokine signaling may induce expression of this novel SPAK isoform in intestinal epithelia, triggering the signaling cascades that govern intestinal inflammation.  相似文献   

18.
19.
20.
Intestinal epithelial cells respond to inflammatory extracellular stimuli by activating mitogen activated protein kinase (MAPK) signaling, which mediates numerous pathophysiological effects, including intestinal inflammation. Here, we show that a novel isoform of SPS1-related proline alanine-rich kinase (SPAK/STE20) is involved in this inflammatory signaling cascade. We cloned and characterized a SPAK isoform from inflamed colon tissue, and found that this SPAK isoform lacked the characteristic PAPA box and alphaF loop found in SPAK. Based on genomic sequence analysis the lack of PAPA box and alphaF loop in colonic SPAK isoform was the result of specific splicing that affect exon 1 and exon 7 of the SPAK gene. The SPAK isoform was found in inflamed and non-inflamed colon tissues as well as Caco2-BBE cells, but not in other tissues, such as liver, spleen, brain, prostate and kidney. In vitro analyses demonstrated that the SPAK isoform possessed serine/threonine kinase activity, which could be abolished by a substitution of isoleucine for the lysine at position 34 in the ATP-binding site of the catalytic domain. Treatment of Caco2-BBE cells with the pro-inflammatory cytokine, interferon γ, induced expression of the SPAK isoform. Over-expression of the SPAK isoform in Caco2-BBE cells led to nuclear translocation of an N-terminal fragment of the SPAK isoform, as well as activation of p38 MAP kinase signaling cascades and increased intestinal barrier permeability. These findings collectively suggest that pro-inflammatory cytokine signaling may induce expression of this novel SPAK isoform in intestinal epithelia, triggering the signaling cascades that govern intestinal inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号