首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohol-induced muscle damage (AIMD) is an umbrella term that includes all forms of alcoholic myopathy developing in acute or chronic alcohol intoxication. The most common form of destruction of skeletal muscles in alcoholism is chronic alcoholic myopathy, which develops independently of other alcohol-induced disorders, such as polyneuropathy, the malabsorption syndrome, and liver damage, but may be combined with them. The atrophy of muscle fibers underlies skeletal muscle destruction in chronic AIMD. Type II muscle fibers are affected to a greater degree than type I muscle fibers. To date, the pathogenesis of chronic alcoholic myopathy has been studied insufficiently. The imbalance between protein synthesis and proteolysis, as well as increased apoptosis rate, is discussed.  相似文献   

2.
Disuse atrophy of skeletal muscles is characterized by a significant decrease in the mass and size of muscle fibers. Disuse atrophy develops as a result of prolonged reduction in the muscle functional activity caused by bed rest, limb immobilization, and real or simulated microgravity. Disuse atrophy is associated with the downregulation of protein biosynthesis and simultaneous activation of protein degradation. This review is focused on the key molecular mechanisms regulating the rate of protein synthesis in mammalian skeletal muscles during functional unloading.  相似文献   

3.
4.
Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other cellular proteins, and the actin thin filament is lost disproportionately to the myosin thick filament. The decline in contractile protein explains the decrease in force per cross-sectional area, whereas the thin-filament loss may explain the observed postflight increase in the maximal velocity of shortening in the type I and IIa fiber types. Importantly, the microgravity-induced decline in peak power is partially offset by the increased fiber velocity. Muscle velocity is further increased by the microgravity-induced expression of fast-type myosin isozymes in slow fibers (hybrid I/II fibers) and by the increased expression of fast type II fiber types. SF increases the susceptibility of skeletal muscle to damage, with the actual damage elicited during postflight reloading. Evidence in rats indicates that SF increases fatigability and reduces the capacity for fat oxidation in skeletal muscles. Future studies will be required to establish the cellular and molecular mechanisms of the SF-induced muscle atrophy and functional loss and to develop effective exercise countermeasures.  相似文献   

5.
6.
Working hypertrophy of skeletal muscle is usually coupled with activation of satellite cells with subsequent incorporation of their nuclei into muscle fibers. Earlier, it has been repeatedly shown that muscle stretching prevents the development of atrophic alterations and is accompanied by an intensification of protein synthesis. We suggested that the elimination of the proliferative abilities of progenitor cells by γ-irradiation would lead to a partial loss of the ability of muscle fibers to maintain their size. To evaluate the role of progenitor cells in the development of the preventive effect of passive stretching, an experiment was carried out with the 2500 rad local irradiation of a rat shin and subsequent hind-limb suspension or hind-limb suspension with stretch. Passive stretching during hind-limb suspension completely prevented atrophy, the transformation of fibers, and a decrease in the myonuclear number observed in the hind-limb-suspension group. Irradiation produced no action of the preventive effect of passive stretch. The conclusion is made that passive stretch preventive action is also realized in the absence of proliferating satellite cells.  相似文献   

7.
The balance between the rates of protein synthesis and degradation in muscle is regulated by PI3K/Akt signaling. Here we addressed the effect of ERK activation by sodium tungstate on protein turnover in rat L6 myotubes. Phosphorylation of ERK by this compound increased protein synthesis by activating MTOR and prevented dexamethasone-induced protein degradation by blocking FoxO3a activity, but it did not alter Akt phosphorylation. Thus, activation of ERK by tungstate improves protein turnover in dexamethasone-treated cells. On the basis of our results, we propose that tungstate be considered an alternative to IGF-I and its analogs in the prevention of skeletal muscle atrophy.  相似文献   

8.
Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type II (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of alpha-tocopherol may be reduced in myopathic patients. However, alpha-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted.  相似文献   

9.
There is a suggestion that dystrophin, a subsarcolemmal protein communicating fiber cytoskeleton to extracellular matrix, participates in signal transduction reflecting the mechanical state of skeletal muscle (mechanotransduction). Recent works indicate the possible signaling role of this protein in the prevention of the activation of proteolytic processes accompanying development of muscle fiber atrophy and in realization of anabolic effects of muscle passive stretching. To assess the role of dystrophin in these processes, the experiment was carried out on two-month old C57 black and mdx (dystrophin-deficient) mice subjected to hind-limb suspension with stretching and without it. Passive stretching results in the partial prevention of atrophy in two muscle fiber types of both C57 black and mdx mice; at the same time, in mdx mice, the slow-to-fast transformation of the soleus muscle fiber type was not observed. Proliferative activity in soleus muscle decreased as a result of hind-limb suspension, but markedly increased during muscle passive stretching. We have found no correlation between the altered dystrophin synthesis and proliferative activity of satellite cells during hind-limb suspension and hind-limb suspension with stretching. Hence, the disturbed dystrophin synthesis retards the atrophy of slow muscle fibers and practically does not affect the stretching preventive action.  相似文献   

10.
Changes in the skeletal muscle protein mass frequently occur in both physiological and pathological states. Muscle hypotrophy, in particular, is commonly observed during aging and is characteristic of several pathological conditions such as neurological diseases, cancer, diabetes, and sepsis. The skeletal muscle protein content depends on the relative rates of synthesis and degradation, which must be coordinately regulated to maintain the equilibrium. Pathological muscle depletion is characterized by a negative nitrogen balance, which results from disruption of this equilibrium due to reduced synthesis, increased breakdown, or both. The current view, mainly based on experimental data, considers hypercatabolism as the major cause of muscle protein depletion. Several signaling pathways that probably contribute to muscle atrophy have been identified, and there is increasing evidence that oxidative stress, due to reactive oxygen species production overwhelming the intracellular antioxidant systems, plays a role in causing muscle depletion both during aging and in chronic pathological states. In particular, oxidative stress has been proposed to enhance protein breakdown, directly or by interacting with other factors. This review focuses on the possibility of using antioxidant treatments to target molecular pathways involved in the pathogenesis of skeletal muscle wasting.  相似文献   

11.
The distinctive contractile and metabolic characteristics of different skeletal muscle fiber types are associated with different protein populations in these cells. In the present work, we investigate the regulation of concentrations of three glycolytic enzymes (aldolase, enolase, glyceraldehyde-3-phosphate dehydrogenase) and creatine-phosphate kinase in “fast-twitch” (breast) and “slow-twitch” (lateral adductor) muscles of the chicken. Results of short-term amino acid incorporation experiments conducted both in vivo and with muscle explants in vitro showed that these enzymes turnover at different rates and that aldolase turns over 2 to 3 times faster than the other three enzymes. However, these differences in turnover rates were difficult to detect in long-term double-isotope incorporation experiments, presumably because extensive reutilization of labeled amino acids occurred during these long-term experiments. Mature muscle fibers synthesize these four cytosolic enzymes at very high rates. For example, 11 to 14% of the total labeled leucine incorporated into protein by breast muscle fibers was found in the enzyme aldolase. Results of short-term amino acid incorporation experiments also showed that the relative rates of synthesis of the three glycolytic enzymes were about fourfold higher in mature “fast-twitch” muscle fibers than in mature “slow-twitch” ones while the relative rates of synthesis of creatine-phosphate kinase were similar in the two fiber types. The relative rates of synthesis of these four enzymes and cytosolic proteins in general were found to be very similar in immature muscles of both types. More profound changes in the relative rates of synthesis of major cytosolic proteins, including the glycolytic enzymes, occurred during postembryonic maturation of fast-twitch fibers than occurred during maturation of slow-twitch fibers. Our work demonstrates that (1) the synthesis of creatine-phosphate is independently regulated with respect to the synthesis of the glycolytic enzymes in muscle fibers; and (2) the approximate fourfold higher steady-state concentrations of glycolytic enzymes in fast-twitch muscle fibers as compared with slow-twitch fibers are determined predominantly by regulatory mechanisms operating at the level of protein synthesis rather than protein degradation. Our demonstration that more profound changes in the relative rates of synthesis of major cytosolic proteins occur during maturation of fast-twitch fibers as compared with slow-twitch fibers is discussed in terms of the mode(s) of fiber-type differentiation proposed by others.  相似文献   

12.
Molecular determinants of skeletal muscle mass: getting the "AKT" together   总被引:5,自引:0,他引:5  
Skeletal muscle is the most abundant tissue in the human body and its normal physiology plays a fundamental role in health and disease. During many disease states, a dramatic loss of skeletal muscle mass (atrophy) is observed. In contrast, physical exercise is capable of producing significant increases in muscle mass (hypertrophy). Maintenance of skeletal muscle mass is often viewed as the net result of the balance between two separate processes, namely protein synthesis and protein degradation. However, these two biochemical processes are not occurring independent of each other but they rather appear to be finely coordinated by a web of intricate signaling networks. Such signaling networks are in charge of executing environmental and cellular cues that will ultimate determine whether muscle proteins are synthesized or degraded. In this review, recent findings are discussed demonstrating that the AKT1/FOXOs/Atrogin-1(MAFbx)/MuRF1 signaling network plays an important role in the progression of skeletal muscle atrophy. These novel findings highlight an important mechanism that coordinates the activation of the protein synthesis machinery with the activation of a genetic program responsible for the degradation of muscle proteins during skeletal muscle atrophy.  相似文献   

13.
Prolonged periods of muscular inactivity (e.g., limb immobilization) result in skeletal muscle atrophy. Although it is established that reactive oxygen species (ROS) play a role in inactivity-induced skeletal muscle atrophy, the cellular pathway(s) responsible for inactivity-induced ROS production remain(s) unclear. To investigate this important issue, we tested the hypothesis that elevated mitochondrial ROS production contributes to immobilization-induced increases in oxidative stress, protease activation, and myofiber atrophy in skeletal muscle. Cause-and-effect was determined by administration of a novel mitochondrial-targeted antioxidant (SS-31) to prevent immobilization-induced mitochondrial ROS production in skeletal muscle fibers. Compared with ambulatory controls, 14 days of muscle immobilization resulted in significant muscle atrophy, along with increased mitochondrial ROS production, muscle oxidative damage, and protease activation. Importantly, treatment with a mitochondrial-targeted antioxidant attenuated the inactivity-induced increase in mitochondrial ROS production and prevented oxidative stress, protease activation, and myofiber atrophy. These results support the hypothesis that redox disturbances contribute to immobilization-induced skeletal muscle atrophy and that mitochondria are an important source of ROS production in muscle fibers during prolonged periods of inactivity.  相似文献   

14.
Skeletal muscle atrophy is evident after muscle disuse, unloading, or spaceflight and results from decreased protein content as a consequence of decreased protein synthesis, increased protein breakdown or both. At this time, there are essentially no human data describing proteolysis in skeletal muscle undergoing atrophy on Earth or in space, primarily due to lack of valid and accurate methodology. This particular study aimed at assessing the effects of short-term unloading on the muscle contractile proteolysis rate. Eight men were subjected to 72-h unilateral lower limb suspension (ULLS) and intramuscular interstitial levels of the naturally occurring proteolytic tracer 3-methylhistidine (3MH) were measured by means of microdialysis before and on completion of this intervention. The 3MH concentration following 72-h ULLS (2.01 +/- 0.22 nmol/ml) was 44% higher (P < 0.05) than before ULLS (1.56 +/- 0.20 nmol/ml). The present experimental model and the employed method determining 3MH in microdialysates present a promising tool for monitoring skeletal muscle proteolysis or metabolism of specific muscles during conditions resulting in atrophy caused by, e.g., disuse and real or simulated microgravity. This study provides evidence that the atrophic processes are evoked rapidly and within 72 h of unloading and suggests that countermeasures should be employed in the early stages of space missions to offset or prevent muscle loss during the period when the rate of muscle atrophy is the highest.  相似文献   

15.
Skeletal muscle atrophy induced by aging (sarcopenia), inactivity, and prolonged fasting states (starvation) is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.  相似文献   

16.
Signalling pathways that mediate skeletal muscle hypertrophy and atrophy   总被引:1,自引:0,他引:1  
Atrophy of skeletal muscle is a serious consequence of numerous diseases, including cancer and AIDS. Successful treatments for skeletal muscle atrophy could either block protein degradation pathways activated during atrophy or stimulate protein synthesis pathways induced during skeletal muscle hypertrophy. This perspective will focus on the signalling pathways that control skeletal muscle atrophy and hypertrophy, including the recently identified ubiquitin ligases muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), as a basis to develop targets for pharmacologic intervention in muscle disease.  相似文献   

17.
Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.  相似文献   

18.
Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week–old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.  相似文献   

19.
骨骼肌是人体氨基酸和蛋白质的主要贮存、代谢库,其正常功能和代谢过程受到多种病理因素的影响。骨骼肌萎缩发生于骨骼肌稳态严重失衡状态下,对患者生活和社会医疗造成了沉重负担。近年来,由于世界肥胖人群数量激增,肥胖诱导的骨骼肌萎缩正日益成为公共卫生的严峻挑战之一。肥胖诱导的骨骼肌萎缩过程涉及多种信号分子或通路的改变,如泛素蛋白酶系统、自噬溶酶体系统、胰岛素/IGF1-PI3K-Akt、肌肉生长抑制素、白细胞介素-6、肿瘤坏死因子等;这些信号分子或通路在肥胖状态下被激活或抑制后,可共同影响蛋白质合成/分解平衡进而造成骨骼肌萎缩。基于上述信号分子或通路,系统总结并讨论了肥胖诱导的骨骼肌萎缩机制,以期为寻找缓解/治疗肥胖诱导的肌萎缩靶点和进一步开发利用天然植物化学物提供理论依据。  相似文献   

20.
Rates of synthesis of protein were measured in vivo in skeletal muscle and in the whole body of cachectic patients with cancer and in normal healthy men, using a tracer infusion of leucine labelled with a stable isotope. Synthesis of protein in muscle was significantly reduced in the patients with cancer (0.030 v 0.198%/hour; p less than 0.01), whereas whole body rates of protein synthesis and degradation did not differ significantly between the two groups. Thus depression of synthesis of protein in muscle appeared to be the immediate cause of muscle wasting in cancerous cachexia. Any therapeutic intervention that aims at preventing the onset of cachexia should be designed to stimulate the synthesis of protein in muscle, and measurement of turnover of protein may be used to evaluate such treatment provided that rates of protein synthesis are measured directly in specific tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号