首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of the receptor for epidermal growth factor was investigated in two human tumor-derived cell lines, Hep 3B and A431. When grown in the presence of tunicamycin, both cells expressed a receptor-related species p135, the presumptive aglycosylated form of the biosynthetic precursor, gp145, of the mature form of the receptor, gp165, expressed at the cell surface. Two additional receptor-related species, p115 and p70, were detected when A431, but not Hep 3B, cells were treated with tunicamycin. Furthermore, digestion of the A431 receptor-related proteins with endoglycosidase F resulted in the detection of these three aglycosylated species. P70 appears to be the aglycosylated form of gp95, the presumptive intracellular precursor of the receptor-related species gp120 that is secreted by A431 but not Hep 3B cells; gp120 has a complex pattern of N-linked glycosylation, with consequent molecular weight and charge heterogeneity. P115 may be the aglycosylated form of a third biosynthetic intermediate, possibly a gp135 species detected in the early time points of pulse-chase labeling. Alternatively, p115 and gp135 may be derived co- or post-translationally by Ca2+-mediated proteolysis from p135 and gp145, respectively. The implications of the complexity of the biosynthesis of this molecule with regard to the multiple opportunities it affords the cell to modulate cell proliferation are discussed.  相似文献   

2.
孤儿受体雌激素受体相关受体α1(ERRα1)与乳腺癌有密切的关系.酵母双杂交筛选发现乳腺组织中肌钙蛋白I2(TNNI2)与其有明显的相互作用.为进一步研究TNNI2与ERRα1的相互作用,融合表达了GST-TNNI2原核蛋白,并体外翻译了35S标记的ERRα1蛋白,将二者共同温育进行GST捕获实验.放射自显影结果显示,TNNI2能够捕获35S标记的ERRα1,证明TNNI2与ERRα1存在体外直接的相互结合,提示了肌钙蛋白I2在ERRα1参与的生理过程中可能有重要的作用.  相似文献   

3.
Zhou Y  Du G  Hu X  Yu S  Liu Y  Xu Y  Huang X  Liu J  Yin B  Fan M  Peng X  Qiang B  Yuan J 《Biochimica et biophysica acta》2005,1669(2):142-154
Nectins are immunoglobulin superfamily adhesion molecules that participate in the organization of epithelial and endothelial junctions. Sharing high homology with the poliovirus receptor (PVR/CD155), nectins were also named poliovirus receptor-related proteins (PRRs). Four nectins and five nectin-like molecules have been identified. Here we describe the cloning and characterization of human and mouse nectin-like molecular 1 (NECL1). Human and mouse NECL1 share 87.3% identity at the amino acid level. NECL1 contains an ectodomain made of three immunoglobulin-like domains, and a cytoplasmic region homologous to those of glycophorin C and contactin-associated protein. RNA blot and in situ hybridization analysis showed that NECL1 predominantly expressed in the central nervous system, mainly in neuronal cell bodies in a variety of brain regions including the cerebellum, cerebral cortex and hippocampus. In vitro binding assay proved the association of NECL1 with protein 4.1N. NECL1 localizes to the cell-cell junctions and recruits protein 4.1N to the plasma membranes through its C-terminus, thus may regulate the function of the cell-cell junction. We propose that the NECL1 and protein 4.1N complex is involved in the morphological development, stability, and dynamic plasticity of the nervous system.  相似文献   

4.
Nectins are immunoglobulin superfamily adhesion molecules that participate in the organization of epithelial and endothelial junctions. Sharing high homology with the poliovirus receptor (PVR/CD155), nectins were also named poliovirus receptor-related proteins (PRRs). Four nectins and five nectin-like molecules have been identified. Here we describe the cloning and characterization of human and mouse nectin-like molecular 1 (NECL1). Human and mouse NECL1 share 87.3% identity at the amino acid level. NECL1 contains an ectodomain made of three immunoglobulin-like domains, and a cytoplasmic region homologous to those of glycophorin C and contactin-associated protein. RNA blot and in situ hybridization analysis showed that NECL1 predominantly expressed in the central nervous system, mainly in neuronal cell bodies in a variety of brain regions including the cerebellum, cerebral cortex and hippocampus. In vitro binding assay proved the association of NECL1 with protein 4.1N. NECL1 localizes to the cell-cell junctions and recruits protein 4.1N to the plasma membranes through its C-terminus, thus may regulate the function of the cell-cell junction. We propose that the NECL1 and protein 4.1N complex is involved in the morphological development, stability, and dynamic plasticity of the nervous system.  相似文献   

5.
DNA sequences coding for the immunogenic capsid protein VP1 and/or VP3 of poliovirus strain LSc-2ab (Sabin 1) were prepared by digesting the cloned complementary DNA with restriction endonuclease PstI. The DNA fragments were inserted into the unique PstI site of Escherichia coli plasmid vectors pBR322, pKT 280 and/or pKT 287 that lay in the region expressed under control of the penicillinase promoter system. In the expression vectors, poliovirus sequences were designed to be read in phase and therefore to be expressed as fusion proteins with the bacterial peptides. In addition, the Escherichia coli tryptophan operon promoter-operator system was inserted upstream of the penicillinase system to obtain stronger expression of the poliovirus sequences. Escherichia coli transformed with these plasmids appeared to produce the antigenic polypeptides, which were detected by immunoprecipitation with antibodies to capsid proteins VP1 and/or VP3 followed by SDS-polyacrylamide gel electrophoresis.  相似文献   

6.
A mouse member of the immunoglobulin superfamily, originally designated the murine poliovirus receptor homolog (Mph), was found to be a receptor for the porcine alphaherpesvirus pseudorabies virus (PRV). This mouse protein, designated here murine herpesvirus entry protein B (mHveB), is most similar to one of three related human alphaherpesvirus receptors, the one designated HveB and also known as poliovirus receptor-related protein 2. Hamster cells resistant to PRV entry became susceptible upon expression of a cDNA encoding mHveB. Anti-mHveB antibody and a soluble protein composed of the mHveB ectodomain inhibited mHveB-dependent PRV entry. Expression of mHveB mRNA was detected in a variety of mouse cell lines, but anti-mHveB antibody inhibited PRV infection in only a subset of these cell lines, indicating that mHveB is the principal mediator of PRV entry into some mouse cell types but not others. Coexpression of mHveB with PRV gD, but not herpes simplex virus type 1 (HSV-1) gD, inhibited entry activity, suggesting that PRV gD may interact directly with mHveB as a ligand that can cause interference. By analogy with HSV-1, envelope-associated PRV gD probably also interacts directly with mHveB during viral entry.  相似文献   

7.
Poliovirus initiates infection of primate cells by binding to the poliovirus receptor, Pvr. Mouse cells do not bind poliovirus but express a Pvr homolog, Mph, that does not function as a poliovirus receptor. Previous work has shown that the first immunoglobulin-like domain of the Pvr protein contains the virus binding site. To further identify sequences of Pvr important for its interaction with poliovirus, stable cell lines expressing mutated Pvr molecules were examined for their abilities to bind virus and support virus replication. Substitution of the amino-terminal domain of Mph with that of Pvr yields a molecule that can function as a poliovirus receptor. Cells expressing this chimeric receptor have normal binding affinity for poliovirus, yet the kinetics of virus replication are delayed. Results of virus alteration assays indicate that this chimeric receptor is defective in converting native virus to 135S altered particles. This defect is not observed with cells expressing receptor recombinants that include Pvr domains 1 and 2. Because altered particles are believed to be an intermediate in poliovirus entry, these findings suggest that Pvr domains 2 and 3 participate in early stages of infection. Additional mutants were made by substituting variant Mph residues for the corresponding residues in Pvr. The results were interpreted by using a model of Pvr predicted from the known structures of other immunoglobulin-like V-type domains. Analysis of stable cell lines expressing the mutant proteins revealed that virus binding is influenced by mutations in the predicted C'-C" loop, the C" beta-strand, the C"-D loop, and the D-E loop. Mutations in homologous regions of the immunoglobulin-like CD4 molecule alter its interaction with gp120 of human immunodeficiency virus type 1. Cells expressing Pvr mutations on the predicted C" edge do not develop cytopathic effect during poliovirus infection, suggesting that poliovirus-induced cytopathic effect may be induced by the virus-receptor interaction.  相似文献   

8.
To examine the interaction of the poliovirus receptor (PVR) with virus and the role of the PVR in virus entry, the PVR was expressed in insect cells. Poliovirus bound to insect cells infected with a recombinant baculovirus (AcPVR) carrying cDNA encoding the PVR. Antibodies raised against PVR expressed in bacteria immunoprecipitated a 67-kilodalton polypeptide from cytoplasmic extracts of AcPVR-infected cells. Treatment of AcPVR-infected cells with tunicamycin revealed that the PVR is a glycoprotein containing N-glycosidic linkages and that carbohydrate accounts for nearly 50% of its molecular weight as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When PVR was solubilized from AcPVR-infected insect cells and incubated with poliovirus, viral infectivity was neutralized. Sedimentation analysis revealed that irreversibly altered 135S particles were formed after incubation of poliovirus at 37 degrees C with solubilized extracts of AcPVR-infected insect cells. These results demonstrate that poliovirus eclipse may result from interaction with the cell receptor at neutral pH in the absence of membranes and suggest that soluble receptors may be effective antiviral agents against picornaviruses.  相似文献   

9.
Using nuclease Bal31, deletions were generated within the poliovirus type 1 cDNA sequences, coding for capsid polypeptide VP1, within plasmid pCW119. The fusion proteins expressed in Escherichia coli by the deleted plasmids reacted with rabbit immune sera directed against poliovirus capsid polypeptide VP1 (alpha VP1 antibodies). They also reacted with a poliovirus type 1 neutralizing monoclonal antibody C3, but reactivity was lost when the deletion extended up to VP1 amino acids 90-104. Computer analysis of the protein revealed a high local density of hydrophilic amino acid residues in the region of VP1 amino acids 93-103. A peptide representing the sequence of this region was chemically synthesized. Once coupled to keyhole limpet hemocyanin, this peptide was specifically immunoprecipitated by C3 antibodies. The peptide also inhibited the neutralization of poliovirus type 1 by C3 antibodies. We thus conclude that the neutralization epitope recognized by C3 is located within the region of amino acids 93-104 of capsid polypeptide VP1.  相似文献   

10.
Defective interfering (DI) RNA genomes of poliovirus which contain in-frame deletions in the P1 capsid protein-encoding region have been described. DI genomes are capable of replication and can be encapsidated by capsid proteins provided in trans from wild-type poliovirus. In this report, we demonstrate that a previously described poliovirus DI genome (K. Hagino-Yamagishi and A. Nomoto, J. Virol. 63:5386-5392, 1989) can be complemented by a recombinant vaccinia virus, VVP1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991), which expresses the poliovirus capsid precursor polyprotein, P1. Stocks of defective polioviruses were generated by transfecting in vitro-transcribed defective genome RNA derived from plasmid pSM1(T7)1 into HeLa cells infected with VVP1 and were maintained by serial passage in the presence of VVP1. Encapsidation of the defective poliovirus genome was demonstrated by characterizing poliovirus-specific protein expression in cells infected with preparations of defective poliovirus and by Northern (RNA) blot analysis of poliovirus-specific RNA incorporated into defective poliovirus particles. Cells infected with preparations of defective poliovirus expressed poliovirus protein 3CD but did not express capsid proteins derived from a full-length P1 precursor. Poliovirus-specific RNA encapsidated in viral particles generated in cells coinfected with VVP1 and defective poliovirus migrated slightly faster on formaldehyde-agarose gels than wild-type poliovirus RNA, demonstrating maintenance of the genomic deletion. By metabolic radiolabeling with [35S]methionine-cysteine, the defective poliovirus particles were shown to contain appropriate mature-virion proteins. This is the first report of the generation of a pure population of defective polioviruses free of contaminating wild-type poliovirus. We demonstrate the use of this recombinant vaccinia virus-defective poliovirus genome complementation system for studying the effects of a defined mutation in the P1 capsid precursor on virus assembly. Following removal of residual VVP1 from defective poliovirus preparations, processing and assembly of poliovirus capsid proteins derived from a nonmyristylated P1 precursor expressed by a recombinant vaccinia virus, VVP1 myr- (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 66:4556-4563, 1992), in cells coinfected with defective poliovirus were analyzed. Capsid proteins generated from nonmyristylated P1 did not assemble detectable levels of mature virions but did assemble, at low levels, into empty capsids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.  相似文献   

12.
The poliovirus receptor (Pvr) is a member of the immunoglobulin superfamily of proteins, but its function in the cell is not known. Southern blot hybridization analysis indicated that the murine genome contains a sequence homolog of pvr. As a first step toward using the murine pvr homolog (mph) to study the function of Pvr, murine genomic and cDNA clones encoding mph were isolated. mph encodes a polypeptide with extensive sequence similarity to the extracellular domains of the human PVR. mph mRNAs of 2.0 and 3.0 kb are transcribed in the adult mouse brain, the spinal cord, the spleen, the kidney, the heart, and the liver. The Mph protein does not function as a receptor for poliovirus. However, substitution of domain 1 of the Mph protein with the corresponding sequence from pvr produced a chimeric receptor that could bind poliovirus and lead to productive infection. By constructing pvr-mph chimeras, it will be possible to identify the contact points of poliovirus within domain 1 of Pvr. Identification of the ligand and the cellular function of the Mph protein may help us understand the role of Pvr in the cell.  相似文献   

13.
Recent studies have demonstrated that genomes of poliovirus with deletions in the P1 (capsid) region contain the necessary viral information for RNA replication. To test the effects of the substitution of foreign genes on RNA replication and protein expression, chimeric human immunodeficiency virus type 1 (HIV-1)-poliovirus genomes were constructed in which regions of the gag, pol, or env gene of HIV-1 were substituted for regions of the P1 gene in the infectious cDNA clone of type 1 Mahoney poliovirus. The HIV-1 genes were inserted between nucleotides 1174 and 2956 of the poliovirus cDNA so that the translational reading frame was maintained between the HIV-1 genes and the remaining poliovirus genes. The chimeric genomes were positioned downstream from a T7 RNA polymerase promoter and transcribed in vitro by using T7 RNA polymerase, and the RNA was transfected into HeLa cells. A Northern (RNA blot) analysis of the RNA from transfected cells demonstrated the appropriate-size RNA, corresponding to the full-length chimeric genomes, which increased over time. Immunoprecipitation with antibodies specific for poliovirus RNA polymerase or sera from AIDS patients demonstrated the expression of the poliovirus RNA polymerase and HIV-1 proteins as fusions with the poliovirus P1 protein. The expression of the HIV-1-poliovirus P1 fusion protein was dependent upon an intact RNA polymerase gene, indicating that RNA replication was required for efficient expression. A pulse-chase analysis of the protein expression from the chimeric genomes demonstrated the initial rapid proteolytic processing of the polyprotein from the chimeric genomes to give HIV-1-poliovirus P1 fusion protein in transfected cells; the HIV-1 gag-P1 and HIV-1 pol-P1 fusion proteins exhibited a greater intracellular stability than the HIV-1 env-P1 fusion protein. Finally, superinfection with wild-type poliovirus of HeLa cells which had been transfected with the chimeric genomes did not significantly affect the expression of chimeric fusion protein. The results are discussed in the context of poliovirus RNA replication and demonstrate the feasibility of using poliovirus genomes (minireplicons) as novel vectors for expression of foreign proteins.  相似文献   

14.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

15.
A monoclonal antibody, AF3, was previously shown to specifically inhibit poliovirus binding to HeLa cells and to detect a 100-kDa glycoprotein only in cell lines and tissues permissive for poliovirus infection. These results suggested that the 100-kDa protein may be involved in the pathogenesis of poliomyelitis and the cellular function of the poliovirus receptor site. To study further the role of the 100-kDa protein in poliovirus attachment, immunoaffinity purification, amino acid sequencing, and cDNA cloning were undertaken. The results demonstrate that antibody AF3 reacts with the lymphocyte homing receptor CD44, a multifunctional cell surface glycoprotein involved in the homing of circulating lymphocytes to lymph nodes and the modulation of lymphocyte adhesion and activation. Antibody AF3 reacts with a subset of CD44 molecules (AF3CD44H), which appears to be a small fraction of the heterogeneously glycosylated CD44 molecules expressed on hematopoietic and nonhematopoietic cells. Anti-CD44 monoclonal antibodies, previously reported to induce CD44-mediated modulation of lymphocyte activation and adhesion, compete with 125I-AF3 in binding assays, demonstrating functional overlap among the epitopes. The anti-CD44 monoclonal antibody A3D8, which binds to a greater molecular weight range of CD44 than does AF3, inhibits poliovirus binding to a similar degree. CD44 does not act as a poliovirus receptor, since CD44-expressing mouse L-cell transformants did not bind poliovirus. The poliovirus receptor and AF3CD44H may be noncovalently associated, or they may interact through the cytoskeleton or signal transduction pathways.  相似文献   

16.
17.
Two viral epitopes (C3 neutralization epitope from poliovirus type 1 and the 132-145 peptide from the PreS2 region from hepatitis B virus) have been expressed in the Escherichia coli periplasm as protein fusion with the maltose binding protein (MalE protein). Immunization of mice with live bacteria expressing the foreign viral epitopes in their periplasm elicited high antibody titers against the viral peptide as well as against the corresponding virus. This demonstrates for the first time in the case of defined epitopes that, when live bacteria are used as immunogens, presentation at the cell surface is not a prerequisite to obtain an antibody response. On the other hand, the induction of antiviral antibody responses by these recombinant bacteria depended dramatically on the route of immunization: a response was induced by live bacteria through the i.v. route but not through the s.c. route. However, when bacteria were heat killed or when the MalE hybrid protein was released under a soluble form from the cell, a response was induced even upon s.c. immunization. From these results, we suggest that in order to induce high levels of antibodies by the s.c. route, a major parameter for bacterial Ag would be their capacity to be released into a soluble form before the interaction of the bacteria with the APC. This would permit the presentation by B cells rather than by phagocytic cells. Finally, we demonstrate that the route of immunization influences the isotypic distribution and the neutralizing activity of the antipoliovirus antibodies. Such results may have major implications for the development of bacterial vaccines based on fusion proteins.  相似文献   

18.

John M. Eagles suggested that polioviruses might cause schizophrenia because 1) several reports of a recent decline in the incidence of schizophrenia coinciding with the introduction of polio vaccination, 2) the observed winter excesses in schizophrenic births (in temperate climates) could be explained by fetal exposure to poliovirus during the second trimester of gestation which would occur during the summer when polio epidemics are most frequent, 3) there are increased rates of schizophrenia among immigrants to the UK from regions of the world with low frequencies if immunity to polioviruses, 4) there may be genetic variants in the poliovirus receptor gene that could increase susceptibility to poliovirus infection (1). The large discordance rates for schizophrenia in monozygotic twin pairs indicate the existence of both genetic and environmental factors. Numerous genetic studies indicate an interaction of several genes in the etiology of schizophrenia. These genes may encode a family of poliovirus receptor subunits, various active combinations of which are expressed on T-immunocytes, monocytes, endothelial cells, and limited populations of (glutamatergic?) neurons. The poliovirus receptor on the T-cell may require both a specific combination of V segments of the T-cell antigen receptor, as well as a specific major histocompatibility (MHC) antigen, acting in concert to infect monocytes, the primary transporter of poliovirus from blood into the brain. The very large discordance rates for schizophrenia that probably exist for dichorionic-monozygotic twins (about 90%), as well as the much smaller discordance rates for monochorionic-monozygotic twins (about 40%), may be due to several allelic exclusion events expressed both in T-cells and possibly in certain neurons. A child who has lost some glutamatergic neurons due to viral infection during the second trimester of gestation, may be able to compensate for this deficit to a large extent by the super-abundance of excitatory synapses that exists in the brain until sexual maturity, at which time a selective loss of excitatory (mainly glutamatergic) synapses occurs together with hormonally induced changes in behavior, leading to a much increased risk of a psychotic episode.

  相似文献   

19.
Expression of the human poliovirus receptor (PVR) in transgenic mice results in susceptibility to poliovirus infection. In the primate host, poliovirus infection is characterized by restricted tissue tropism. To determine the pattern of poliovirus tissue tropism in PVR transgenic mice, PVR gene expression and susceptibility to poliovirus infection were examined by in situ hybridization. PVR RNA is expressed in transgenic mice at high levels in neurons of the central and peripheral nervous system, developing T lymphocytes in the thymus, epithelial cells of Bowman's capsule and tubules in the kidney, alveolar cells in the lung, and endocrine cells in the adrenal cortex, and it is expressed at low levels in intestine, spleen, and skeletal muscle. After infection, poliovirus replication was detected only in neurons of the brain and spinal cord and in skeletal muscle. These results demonstrated that poliovirus tissue tropism is not governed solely by expression of the PVR gene nor by accessibility of cells to virus. Although transgenic mouse kidney tissue expressed poliovirus binding sites and was not a site of poliovirus replication, when cultivated in vitro, kidney cells developed susceptibility to infection. Identification of the changes in cultured kidney cells that permit poliovirus infection may provide information on the mechanism of poliovirus tissue tropism.  相似文献   

20.
After fusion with the N-proximal portion of the outer membrane protein LamB, three beta-adrenergic receptors, the human beta 1- and beta 2- and turkey beta 1-adrenergic receptor, were expressed in Escherichia coli with retention of their own specific pharmacological properties. Molecular characterization and localization of the three receptors in bacteria and comparison of the behaviour of each hybrid protein are reported. The bacteria were lysed and fractionated on a sucrose gradient. Saturable [125I]iodocyanopindolol binding activity was found associated mainly with the inner membrane fraction, suggesting that the receptor is correctly folded in this membrane. Binding activity was also found in the outer membrane fraction but varied according to the receptor type. Photoaffinity labeling experiments revealed that the receptors exhibit binding activity only after proteolytic removal of the LamB moiety from the fusion protein. The three hybrid proteins, detected in immunoblots by anti-peptide antibodies, were found mainly in the outer membrane fraction. Each of them exhibited different susceptibility to intrinsic bacterial proteolytic enzymes; sites of proteolytic cleavage were localized by the use of anti-peptide antibodies. The functional expression in E. coli of three beta-adrenergic receptors with similar structure but different amino acid sequences suggests that this expression system may be a general feature among similar receptors of the family of G-protein-coupled receptors. The level of expressed binding activity of a given receptor will be within the control of proteolytic degradation processes, depending on the primary sequence of the receptor. Constructions of new hybrid proteins, in combination with expression in protease mutants of E. coli, should help in controlling such processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号