首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Phytochemistry》1987,26(4):1213
Stems and leaves of Amsonia grandiflora yielded lupeol β-hydroxyoctadecanoate, betulinic acid, oleanolic acid, lupeol, lupeol acetate and 1-O-methyl-myo-inositol.  相似文献   

2.
Incubation of mature sweet corn kernels of Zea mays in dilute solutions of 14C-labeled indole-3-acetic acid leads to the formation of 14C-labeled esters of myo-inositol, glucose, and glucans. Utilizing this knowledge it was found that an enzyme preparation from immature sweet corn kernels of Zea mays catalyzed the CoA- and ATP-dependent esterification of indole-3-acetic acid to myo-inositol and glucose. The esters formed were 2-O-(indole-3-acetyl)-myo-inositol, 1-dl-1-O-(indole-3-acetyl)-myo-inositol, di-O-(indole-3-acetyl)-myo-inositol, tri-O-(indole-3-acetyl)-myo-inositol, 2-O-(indole-3-acetyl)-d-glucopyranose, 4-O-(indole-3-acetyl)-d-glucopyranose and 6-O-(indole-3-acetyl)-d-glycopyranose. An assay system was developed for measuring esterification of 14C-labeled indole-3-acetic acid by ammonolysis of the esters followed by isolation and counting the radioactive indole-3-acetamide.  相似文献   

3.
Starting from myo-inositol, 1,2-O-isopropylidene-3,4,5,6-tetra-O-(methylsulfonyl)-, 1,4,5,6-tetra-O-(methylsulfonyl)-, and 2,3-di-O-acetyl-1,4,5,6-tetra-O-(methylsulfonyl)-myo-inositol (3) were synthesized. Compound 3 was treated with sodium azide to give 3-azido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol, reduction of whose diacetate led to a mixture of 3-amino-3-deoxy- and 3-acetamido-2-O-acetyl-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol. The configurations and conformations of these compounds were ascertained by n.m.r. spectroscopy. 3-Acetamido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol and its 2,4-diacetate are also described.  相似文献   

4.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

5.
Ononitol (4-O-methyl-myo-inositol) was identified as a major carbohydrate in Pisum sativum nodules, comprising 25–34% of the total mono- plus disaccharides in nodules formed by two Rhizobium leguminosarum strains. Ononitol was purified from Glycine max nodules and was found to be a minor carbohydrate in these nodules. The distribution of ononitol in bacteroids and cytosol from soybean nodules suggests that it is not synthesized by bacteroids.  相似文献   

6.
The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide.  相似文献   

7.
A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-β-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-β-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.  相似文献   

8.
The reaction of 2,3-di-O-acetyl-1,4,5,6-tetra-O-(methylsulfonyl)-myo-inositol (1) with sodio-adenine in HCONMe2 for 24 h at 100° gave, in 53.7% yield, the title compound, whose structure was ascertained by physical methods. Other parallel, secondary reactions were the aromatization of compound 1 to give 2,4-di-O-(methylsulfonyl)-1,2,4-benzenetriol (13.8%), and the formation of 1,5,6-tri-O-(methylsulfonyl)-muco-inositol (17.8%).  相似文献   

9.
Wheat kernels from myo-[2-3H]inositol- or scyllo-[R-3H]inositol-labeled plants (Sasaki and Loewus 1980 Plant Physiol 66: 740-745) were used to study redistribution of 3H into growing regions during germination. Most of the labeled 1-α-galactinol (or the analogous scyllo-inositol galactoside) was hydrolyzed within 1 day. Water-soluble phytate was dephosphorylated within 3 days. A large reserve of bound phytate continued to release myo-inositol over several days. Translocation of free myo-inositol to growing regions provided substrate for the myo-inositol oxidation pathway and incorporation of 3H into new cell wall polysaccharides.  相似文献   

10.
Metabolism of myo-Inositol by Germinating Lilium longiflorum Pollen   总被引:1,自引:1,他引:0  
Lilium Iongiflorum pollen tubes absorbed myo-[2-3H]inositol produced labeled metabolites which were separated into acid-soluble and -insoluble fractions. The soluble fraction contained labeled myo-inositol, d-glucuronic acid, myo-inositol 1-phosphate, and at least three other unidentified compounds. The acid-insoluble fraction contained considerable chloroformsoluble radioactivity and a labeled residue. Labeled myo-inositol was also absorbed by germinating pollen prior to the time of pollen tube initiation; however, there was a marked reduction in amounts of myo-inositol 1-phosphate and glucuronic acid produced by this pollen in comparison with growing pollen tubes.  相似文献   

11.
Summary The biosynthesis of phytic acid is known to be catalyzed by enzymes causing a stepwise phosphorylation of myo-inositol or 1l-myo-inositol 1-phosphate with adenosine triphosphate as phosphate donor. The kinases responsible for these phosphorylations in Lemna gibba were purified by affinity chromatography on a Sepharose gel carrying myo-inositol 2-phosphate at the binding site. Three fractions with enzymatic activity could be identified; in the first one, we find myo-inositol kinase (EC 2.7.1.64) phosphorylating myo-inositol to 1l-myo-inositol 1-phosphate; the second one brings about the phosphorylation of myo-inositol trisphosphate to phytic acid; the third one phosphorylates myo-inositol 1-phosphate to a myo-inositol trisphosphate. An enzyme oxidizing 1l-myo-inositol 1-phosphate to an uronic acid derivative is found in the first two fractions. In the presence of ATP, Mg2+ Mn2+, and the second and the third enzyme fractions in an appropriate mixture, 1l-myo-inositol 1-phosphate can be phosphorylated to phytic acid. The structure of the trisphosphate acting as an intermediate is not yet known.  相似文献   

12.
We have demonstrated the in vitro enzymatic synthesis of an ester of indole-3-acetic acid (IAA) and glucose and of IAA and myo-inositol by the following reaction sequence: lt]o| li]1) IAA + UDPG ? IAA-glucose +UDP li]2) IAA-glucose +myo-inositol → IAA-itmyo-inositol +glucose The enzymes were partially purified from extracts of immature kernels of Zea mays sweet corn and the two activities separated on a Sephadex G-150 column. Products were characterized, primarily, by comparison of their 70 eV mass spectra with those of authentic synthetic standards. To our knowledge this is the first example of enzymatically catalyzed acylation by a 1-O-acylsugar.  相似文献   

13.
Radiolabeled d-[1-3H]glucose was fed by imbibition under sterile conditions to bean (Phaseolus vulgaris L.) seeds. After 72 and 96 hours of feeding, the 3H was located in uronic acid and pentose residues as well as hexose residues of cell wall polysaccharides in growing hypocotyl and root. Free myo-inositol present in cotyledons, hypocotyl, and root also contained 3H, showing that de novo synthesis of myo-inositol from [1-3H]glucose did occur during the first 72 hours of germination. More than 90% of the labeled, free myo-inositol was present in the cotyledons. The 3H percentage in trifluoroacetic acid-soluble arabinose residues of cell wall polysaccharides from 72-hour-old bean hypocotyls was only half of their mole percentage. On the other hand, 3H percentages in hexose residues were higher than their mole percentages. The results suggest that myo-inositol is synthesized from reserve sugars during the very early stages of germination, and that the newly synthesized myo-inositol, as well as that stored in cotyledons, can be used for the construction of new hypocotyl and root cell wall polysaccharides after conversion into uronic acids and pentoses via the myo-inositol oxidation pathway.  相似文献   

14.
The hydrogen isotope-effect that occurs in vitro during myo-inositol 1-phosphate synthase-catalyzed conversion of d-[5-3H]glucose 6-phosphate into myo-[2-3H]inositol 1-phosphate has been used to compare the functional role of the nucleotide sugar oxidation-pathway with that of the myo-inositol oxidation-pathway in germinating lily pollen. Results reveal a significant difference between the 3H/14C ratios of glucosyl and galactosyluronic residues from pectinase-amyloglucosidase hydrolyzates of the 70 % ethanol-insoluble fraction of d-[5-3H, 1-14-C]glucose-labeled, germinating lily pollen. This isotope effect at C-5 of d-glucose that occurred during its conversion into d-galactosyluronic residues of pectic substance is not explained by loss of 3H when UDP-d-[5-3H, 1-14C]glucose is oxidized by UDP-d-glucose dehydrogenase from germinating lily pollen. The evidence obtained from this study favors a functional role for the myo-inositol oxidation pathway during in vivo conversion of glucose into galactosyluronic residues of pectin in germinating lily pollen.  相似文献   

15.
The accumulation of compatible solutes was studied in the hyperthermophilic bacterium Aquifex pyrophilus as a function of the temperature and the NaCl concentration of the growth medium. Nuclear magnetic resonance analysis of cell extracts revealed the presence of α- and β-glutamate, di-mannosyl-di-myo-inositol phosphate, di-myo-inositol phosphate, and an additional compound here identified as 1-glyceryl-1-myo-inosityl phosphate. All solutes accumulated by A. pyrophilus are negatively charged at physiological pH. The intracellular levels of di-myo-inositol phosphate increased in response to supraoptimal growth temperature, while α- and β-glutamate accumulated in response to osmotic stress, especially at growth temperatures below the optimum. The newly discovered compound, 1-glyceryl-1-myo-inosityl phosphate, appears to play a double role in osmo- and thermoprotection, since its intracellular pool increased primarily in response to a combination of osmotic and heat stresses. This work also uncovered the nature of the unknown compound, previously detected in Archaeoglobus fulgidus (L. O. Martins et al., Appl. Environ. Microbiol. 63:896-902, 1997). The curious structural relationship between diglycerol phosphate (found only in Archaeoglobus species), di-myo-inositol phosphate (a canonical solute of hyperthermophiles), and the newly identified solute is highlighted. This is the first report on the occurrence of 1-glyceryl-1-myo-inosityl phosphate in living systems.  相似文献   

16.
Sea buckthorn (Hippophaë rhamnoides L.) berries, especially of ssp. sinensis, contain significant quantities of an unknown, water-soluble compound, evidently a cyclitol derivative. The compound was isolated by HPLC and analyzed by GC–MS [trimethylsilyl (TMS) derivative, selected ion monitoring (SIM) and total ion chromatogram (TIC) analyses], by 1H and 13C NMR and by optical activity measurements. The results together with analyses of reference compound verified the unambiguous structure (?)-2-O-methyl-l-chiro-inositol (l-quebrachitol). In addition, chiro-inositol and myo-inositol existing in trace amounts were identified based on reference compounds, chromatographic data and mass spectra of the TMS derivatives. Methyl-myo-inositol was tentatively identified based on chromatography and mass spectrometry. Inositols and methyl inositols are bioactive compounds essential for regulating physiological processes of plants and humans. To our knowledge, this is the first report on the presence of chiro-inositol and myo-inositol in sea buckthorn and l-quebrachitol in edible berries. The identification of the inositols and l-quebrachitol in sea buckthorn may bring new insights into the sensory properties and also mechanisms behind the health effects of the berry.  相似文献   

17.
myo-Inositol homeostasis in foetal rabbit lung   总被引:2,自引:2,他引:0  
In several species, lung maturation is accompanied by a decline in the phosphatidylinositol content of lung surfactant and a concomitant increase in its phosphatidylglycerol content. To examine the possibility that this developmental change is influenced by the availability of myo-inositol, potential sources of myo-inositol for the developing rabbit lung were investigated. On day 28 of gestation the myo-inositol content of foetal rabbit lung tissue (2.3±0.5μmol/g of tissue) was not significantly different from that of adult lung tissue but the activity of d-glucose 6-phosphate:1l-myo-inositol 1-phosphate cyclase (cyclase) in foetal lung tissue (81.0±9.0nmol·h−1·g of tissue−1) was higher than that found in adult lung tissue (23.2±1.0nmol·h−1·g of tissue−1). Day 28 foetal rabbit lung tissue was found also to take up myo-inositol by a specific, energy-dependent, Na+-requiring mechanism. Half-maximal uptake of myo-inositol by foetal rabbit lung slices was observed when the concentration of myo-inositol in the incubation medium was 85μm. When the myo-inositol concentration was 1mm (but not 100μm) the addition of glucose (5.5mm) stimulated myo-inositol uptake. myo-Inositol uptake was observed also in adult rabbit lung and was found to be sub-maximal at the concentration of myo-inositol found in adult rabbit serum. The concentration of myo-inositol in the serum of pregnant adult rabbits (47.5±5.5μm) was significantly lower than that of non-pregnant adult female rabbits (77.9±9.2μm). On day 28 of gestation the concentration of myo-inositol in foetal serum (175.1±12.0μm) was much less than on day 25, but more than that found on day 30. A transient post-partum increase in the concentration of myo-inositol in serum was followed by a rapid decline. Much of the myo-inositol in foetal rabbit serum probably originates from the placenta, where on day 28 of gestation a high cyclase activity (527±64nmol·h−1·g of tissue−1) was measured. The gestational decline in serum myo-inositol concentration, together with the decreasing cyclase activity of the lungs, is consistent with the view that maturation of the lungs is accompanied by decreased availability of myo-inositol to this tissue.  相似文献   

18.
d-myo-Inositol-1-phosphate was synthesized by a short and facile route from optically pure 1d-1-acetoxy-4,6-di-O–benzyl-myo–inositol, which was easily obtained by a highly regio- and enantioselective enzyme-catalyzed acetylation of 4,6-di-O-benzyl-myo-inositol.  相似文献   

19.
Addition of myo-inositol to pentaerythritol-based germination media repressed the conversion of d-[1-14C]glucose to labeled uronosyl and pentosyl units of tube wall pectic substance in lily pollen (Lilium longiflorum Thunb.). Conversion of d-[1-14C]glucose to labeled glucosyl, galactosyl, and rhamnosyl units was unaffected. The reverse experiment, addition of d-glucose to pentaerythritol-based media, failed to affect the conversion of myo-[2-3H]inositol to uronosyl and pentosyl units although the flow of label into products of myo-inositol-linked glucogenesis was blocked. Results of these experiments are discussed in terms of a functional myo-inositol oxidation pathway.  相似文献   

20.
The seeds of 9 members of the subgenusCeratotropis (Piper) Verdc., namelyVigna aconitifolia (Jacq.) Maréchal,V. angularis (Willd.) Ohwi et Ohashi,V. minima (Roxb.) Ohwi et Ohashi,V. nakashimae (Ohwi) Ohwi et Ohashi,V. reflexo-pilosa Hayata,V. umbellata (Thumb.) Ohwi et Ohashi,V. mungo (L.) Hepper,V. radiata (L.) Wilczek andV. sp., have been examined. On their low molecular weight carbohydrate compositions, this subgenus has been divided into 2 subgroups, mungo-radiata group and angularis group. Four other species referred to the subgeneraPlectotropis (Schumach.) Bak.,Lasiospron (Benth. emend Piper) Maréchal, Mascherpa et Stainier andVigna, V. vexillata (L.) A. Rich.,V. lasiocarpa (Benth.) Verdc.,V. marina (Burm.) Merr. andV. unguiculata (L.) Walp., were also analyzed and they had distinctive carbohydrate compositions. 1d-4-O-methyl-myo-inositol and 1d-5-O-(α-d-galactopyranosyl)-4-O-methyl-myo-inositol were detected in all species examined exceptV. vexillata, V. mungo andV. radiata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号