首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The sterols of Zea mays shoots were isolated and characterized by TLC, HPLC, GC/MS and 1H NMR techniques. In all, 22 4-demethyl sterols were identified and they included trace amounts of the Δ23-, Δ24- and Δ25-sterols, 24-methylcholesta-5,E-23-dien-3β-ol, 24-methylcholesta-5,Z-23-dien-3β-ol, 24-methylcholesta-5,25-dien-3β-ol, 24-ethylcholesta-5,25-dien-3β-ol and 24-ethylcholesta-5,24-dien-3β-ol. In the 4,4-dimethyl sterol fraction, cycloartenol and 24-methylenecycloartanol were the major sterol components but small amounts of the Δ23-compound, cyclosadol, and the Δ25-compound, cyclolaudenol, were recognized. These various Δ23- and Δ25-sterols may have some importance in alternative biosynthetic routes to the major sterols, particularly the 24β-methylcholest-5-en-3β-ol component of the C28-sterols. Radioactivity from both [2-14C]MVA and [methyl-14C]methionine was incorporated by Z. mays shoots into the sterol mixture. Although 24-methylene and 24-ethylidene sterols were relatively highly labelled, the various Δ23- and Δ25-sterols contained much lower levels of radioactivity, which is possibly indicative of their participation in alternative sterol biosynthetic routes. (24R)-24-Ethylcholest-5-en-3β-ol (sitosterol) had a significantly higher specific activity than the 24-methylcholest-5-en-3β-ol indicating that the former is synthesized at a faster rate.  相似文献   

2.
The free sterols of the fungi Ganoderma applanatum, Ganoderma lucidum and Polyporus sulfureus were isolated and characterized by means of GC and GC/MS techniques. 24-Methylcholesta-7,22-dien-3β-ol was the main component of the sterol mixtures while 24-methylcholesta-5,7,22-trien-3β-ol ergosterol) and 24-methylcholest-7-en-3β-ol were also present although in lower amounts. P. sulfureus, besides the mentioned sterols, also contained 24 ethylcholestan-3β-ol.  相似文献   

3.
  • 1.1. The bivalve molluscs Cerastoderma edula, Chlamys opercularis, Ensis soliqua, Modiolus modiolus, Mya arenaria, Mytilus edulis and Pecten maximus contained mixtures of C26-, C27-, C28- and C29-sterols. Cholesterol, 24-methylcholesta-5,22-dien-3β-ol and 24-methylene-cholesterol were the major sterols.
  • 2.2. The sterols of Cerastoderma edula, Mya arenaria and Mytilus edulis contained 6–16% of cholesta-5,24-dien-3β-ol.
  • 3.3. All the molluscs contained Δ5,7-sterols in amounts ranging from 2 to 21% of the total sterols.
  • 4.4. Cholesta-5,7-dien-3β-ol and 24-methylcholesta-5,7,22-trien-3β-ol were identified in Mytilus edulis. 25-Norcholesta-5,7,22-trien-3β-ol was detected in Modiolus modiolus.
  相似文献   

4.
Sterols extracted from Xanthoria parietina with organic solvents and released by saponification of the residual lichen tissue were analysed by GC-MS. The main components of the solvent-extractable sterols were two C28 trienes and those of the more tightly bound sterols were ergost-5-en-3β-ol and two C29 compounds. The structures of the C28 compounds were shown to be ergosta-5,7,22-trien-3β-ol, Ia (ergosterol) and the previously unreported ergosta-5,8,22-trien-3β-ol, IIa, for which the name lichesterol is proposed. The main C29 sterol was identified as (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol).  相似文献   

5.
A mixture of C27, C28 and C29 sterols was isolated from the lichen Pseudevernia furfuracea and characterized by means of GLC and MS. Mono-, di- and tri-unsaturated sterols were identified as well as a small amount of fully saturated sterols (stanols). Only a part of the total sterols present in the lichen tissue was easily extractable with organic solvents. Another portion was only obtained after saponification of the lichen residue remaining after extraction with organic solvents. The composition of these two fractions difrered considerably, the former contained predominantly 5a,8a-epidioxy-5a-ergosta-6,22-dien-3β-ol (ergosterol peroxide) and 24-ethylcholesta-5,22-dien-3β-ol while in the latter 24-ethylcholesta-5,22-dien- 3β-ol and C28 triene sterols were the main components.  相似文献   

6.
《Phytochemistry》1987,26(11):3088-3089
Fractionation of the sterol mixture from Tristagma uniflorum, Nothoscordum gramineum var. philippianum, Nothoscordum inodorum, and Nothoscordum montevidense were achieved by means of preparative TLC. Analysis of the fractions by GC and GC-MS allowed the identification of Δ0, Δ5, and Δ7 sterols. The unusually high proportion of cholestan-3β-ol seems to be biogenetically related to the C27 steroidal sapogenins contained in those plants.  相似文献   

7.
In 3- and 14-day-old seedlings and in the leaves of Calendula officinalis the following sterols were identified: cholestanol, campestanol, stigmastanol, cholest-7-en-3-β-ol, 24-methylcholest-7-en-3β-ol, stigmast-7-en-3β-ol, cholesterol, campesterol, sitosterol, 24-methylcholesta-5,22-dien-3β-ol, 24-methylenecholesterol, stigmasterol and clerosterol. Sitosterol was predominant in young and stigmasterol in old tissues. Young tissues contained relatively more campesterol but in old tissues a C28Δ5,22 diene was present suggesting transformation of campesterol to its Δ5,22 analog, similar to that of sitosterol to stigmasterol. All the identified sterols were present as free compounds and also in the steryl esters, glucosides, acylated glucosides and water-soluble complexes. The variations in the amounts of these fractions in the embryo axes and cotyledons of 3- and 14-day-old seedlings and the distribution of individual sterols among the fractions are discussed.  相似文献   

8.
The heterotrophic dinoflagellate Crypthecodinium cohnii contained the 4α-methyl sterols, dinosterol, dehydrodinosterol (4α,23,24-trimethylcholesta-5,22-dien-3β-ol) and the tentatively identified 4α,24-dimethyl-cholestan-3β-ol and 4α,24-dimethylcholest-5-en-3β-ol. The major 4-demethyl sterol was cholesta-5,7-dien-3β-ol which was accompanied by a smaller amount of cholesterol and traces of several other C27,C28 and C29 sterols. In addition, a 3-oxo-steroid fraction was isolated and the major component identified as dinosterone (4α,23,24-trimethylcholest-22-en-3-one). The possible biosynthetic relationships of these compounds are discussed.  相似文献   

9.
The sterol compositions of 14 species of marine diatoms were determined by gas chromatography and gas chromatography-mass spectrometry. A variety of sterol profiles were found. The sterols 24-methylcholesta-5,22E-dien-3β-ol, cholest-5-en-3β-ol, and 24-methylcholesta-5,24(28)-dien-3β-ol, previously described as the most common sterols found in diatoms, were major sterols in only a few of the species. In light of this and other recent data, it is clear that these three sterols are not typical constituents of many diatom species. Most of the centric species examined had 24-methylcholesta-5,24(28)-dien-3β-ol and 24-methylcholest-5-en-3β-ol as two of their major sterols. The exception was Rhizosolenia setigera, which possessed cholesta-5,24-dien-3β-ol as its single major sterol. In contrast to the centric species, the pennate diatoms examined did not have any particular sterols common to most species. Minor levels ofΔ7-sterols, rarely found in large amounts in diatoms, were found in four species. C29sterols were found in many species; seven contained 24-ethylcholest-5-en-3β-ol and three contained 24-ethylcholesta-5,22E-dien-3β-ol, reinforcing previous suggestions that C29 sterols are not restricted to higher plants and macroalgae. 24-Ethylcholesta-5,22E-dien-3β-ol may prove to be useful for taxonomy of the genus Amphora and the order Thalassiophysales. A major sterol of Fragilaria pinnata was the uncommon algal sterol 23,24-dimethylcholesta-5,22E-dien-3β-ol. Cholesta-5,24-dien-3β-ol was the only sterol found in the culture of Nitzschia closterium. This differed from previous reports of 24-methylcholesta-5,22E-dien-3β-ol as the single major sterol in N. closterium. Two C28 sterols possessing an unusual side chain were found in Thalassi-onema nitzschioides, a C28:2 sterol (16%) and a C28:1 sterol in lower abundance (2.5%), which may be 23-methylcholesta-5,22E-dien-3β-ol and 23-methyl-5α-cholest-22E-en-3β-ol, respectively. The species Cylindrotheca fusiformis, T. nitzschioides, and Skeletonema sp. may be useful as direct sources of cholesterol in mariculture feeds due to their moderate to high content of this sterol.  相似文献   

10.
Sterols were isolated from ten mushrooms, Hygrocybe punicea, Lampteromyces japonicus, Leucopaxillus giganteus, Lentinus edodes, Flammulina velutipes, Amanita caesarea, Coprinus atramentarius, Russula foetens, R. nigricans and R. senecis. The compositions of the sterol fractions were determined by GLC, combined GC/MS, and 1H NMR. Ergosterol was present in all the mushrooms. Other sterols found were 5α-cholest-7-en-3β-ol and ergosta-5,7-dien-3β-ol. Ergosta-5,8,22-trien-3β-ol was isolated from F. velutipes.  相似文献   

11.
The dinoflagellates Amphidinium carterae and Amphidinium corpulentum have been previously characterized as having Δ8(14)-nuclear unsaturated 4α-methyl-5α-cholest-8(14)-en-3β-ol (C28:1) and 4α-methyl-5α-ergosta-8(14),24(28)-dien-3β-ol (amphisterol; C29:2) as predominant sterols, where they comprise approximately 80% of the total sterol composition. These two sterols have hence been considered as possible major sterol biomarkers for the genus. Here, we have examined the sterols of four recently identified species of Amphidinium (Amphidinium fijiense, Amphidinium magnum, Amphidinium theodori, and Amphidinium tomasii) that are closely related to Amphidinium operculatum as part of what is termed the Operculatum Clade to show that each species has its sterol composition dominated by the common dinoflagellate sterol cholesterol (cholest-5-en-3β-ol; C27:1), which is found in many other dinoflagellate genera, rather than Δ8(14) sterols. While the Δ8(14) sterols 4α-methyl-5α-cholest-8(14)-en-3β-ol and 4α,23,24-trimethyl-5α-cholest-8(14),22E-dien-3β-ol (C30:2) were present as minor sterols along with another common dinoflagellate sterol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol; C30:1), in some of these four species, amphisterol was not conclusively observed. From a chemotaxonomic perspective, while this does reinforce the genus Amphidinium's ability to produce Δ8(14) sterols, albeit here as minor sterols, these results demonstrate that caution should be used when considering Δ8(14) sterols, especially amphisterol, as Amphidinium-specific biomarkers within these species where cholesterol is the predominant sterol.  相似文献   

12.
The sterol composition of the cold water brown alga Agarum cribosum was determined by GC—MS. Six of the seven sterols found were identified as stigmata-5,(E)-24(28)-dien-3β-ol (fucosterol), 24-methylenecholest-5-en-3β-ol (24-methylenecholesterol), cholest-5-en-3β-ol (cholesterol), 3β-hydroxycholest-5-en-24-one (24-ketocholesterol), 24ξ-stigmasta-5,28-diene-3β,24-diol (saringosterol) and cholesta-5, 24-dien-3β-ol (desmosterol).  相似文献   

13.
Bramble suspension cultures normally contain Δ5 sterols (sitosterol, campesterol, and isofucosterol). When the cells were grown in a medium supplemented with AY-9944, their content of Δ5 sterols was greatly decreased and Δ8 sterols accumulated. Six Δ8 sterols, including three new compounds, (24R)-24-ethyl-5α-cholest-8-en-3β-ol, stigmasta-8,Z-24(28)-dien-3β-ol, and 4α-methyl-stigmasta-8,Z-24(28)-dien-3β-ol, were identified. AY-9944 probably inhibited the Δ8→Δ7 isomerase. A stable cell line growing permanently in an AY-supplemented medium was obtained.  相似文献   

14.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

15.
The composition of the sterol fraction of Gleditsia triacanthos, G. macracantha, Thea sinensis, Medicago sativa and Spinacia oleracea has been determined using GC and GC/MS. The sum of δ7-sterols ranges from 67 to 95%. Among them 24ξ-ethyl-5α-cholest-7,trans-22-dien-3β-ol (28–50%) and 24ξ-ethyl-5α-cholest-7-en-3β-ol (23–49%) are the major components. The co-occurrence of δ5- and δ7-sterols has been observed in all species. The possible biosynthetic pathway of the phytosterol nucleus leading to these sterols is discussed.  相似文献   

16.
  • 1.1. Sulphated and etherified sterols were isolated from the far eastern holothurian Stichopus japonicus S. The sterol composition of both fractions was determined using gas-liquid chromatography and mass-spectroscopic methods. The structures of individual sterols were proved on the basis of mass-spectrometry and 1H-NMR-spectroscopy data.
  • 2.2. The structures of 29 sterols were established.
  • 3.3. Sterols (22E, 24R)-23,24-dimethyl-5α-cholest-22-en-3β-ol, 23,24-dimethyl-cholesta-5,22-dien-3β-ol, 24-methyl-cholesta-5,24(28)-dien-3β-ol, (24Z)-24-ethyl-cholesta-5,24(28)-dien-3β-ol, 24-nor-cholesta-5,22-dien-3β-ol, 24-ethyl-cholesta-5,25-dien-3β-ol were described for holothurians for the first time.
  • 4.4. Δ5-sterols were shown to be the main components of the sulphated alcohol fractions (67.61%), while the saturated and Δ7-sterols were there in less quantities (14.72 and 9.52%, respectively).
  • 5.5. The etherified sterols were represented, mainly, by saturated and Δ7-sterols (37.82% and 33.95%, respectively). Δ5-sterols were 19%.
  • 6.6. The sensitivity of liposomal membranes, containing steroid metabolites of the holothurian St. japonicus (Δ7-, sulphated and glycosilated sterols) to the action of endotoxin-stichoposide A, was studied.
  相似文献   

17.
Several new 4α-methyl sterols with unusual unsaturation in the Δ8(14)-or Δ14-positions, 4α,24S-dimethyl-5α-cholest-8 (14)-en-3β-ol, 4α-methyl-24ξ-ethyl-5α-cholest-8(14)-en-3β-ol, 4α-methyl-24(Z)-ethylidene-5α-cholest-8(14)- en-3β-ol, 4α,23 (or 22),24ξ-trimethyl-5α-cholesta-8(14),22-dien-3β-ol, 4α,24S(or 23ξ)-dimethyl-5α-cholest-14-en-3β-ol and 14-dehydrodinosterol, have been isolated from extracts of the cultured marine dinoflagellates Amphidinium carterae, A. corpulentum and Glenodinium sp. 4α-Methyl-24ξ-ethyl-5α-cholestan-3β-ol was isolated from the steryl ester fraction of Glenodinium sp. The structures of these new sterols are based upon extensive 360 MHz 1H NMR and MS analyses.  相似文献   

18.
In addition to the previously found ergosta-5, E-23-dien-3β-ol and 5α-ergosta-7, E-23-dien-3β-ol, the following Δ23 sterols have been identified in etiolated maize coleoptiles: cyclosadol, 4α, 14α-dimethyl-5α-ergosta-8, E-23-dien-3β-ol, 4α, 14α-dimethyl-9β, 19-cyclo-5α-ergosta-8, E-23-dien-3β-ol and 4α-methyl-5α-ergosta-7, E-23-dien-3β-ol. The incubation of maize coleoptile microsomes in the presence of cycloartenol and of [14C-methyl]S-adenosyl methionine gave a mixture of labelled 24-methylene cycloartanol and cyclosadol. No trace of cyclolaudenol could be detected in these conditions. It is suggested that Δ23 sterols are products of the C-24 methyltransferase reaction and they probably do not arise from a Δ24 → Δ23 isomerization occurring at a later stage of the biosynthesis. The Δ13-sterols may play an intermediary role in the biosynthesis of 24-methyl sterols in this plant material.  相似文献   

19.
Triterpene alcohols and sterols of the red alga Rhodymenia palmata have been investigated. Cycloartanol, 31-nor-cycloartanol and the C26 sterol 24-dimethylchola-5,22-diene-3β-ol (1) have been identified. Feeding experiments have been performed using 1-14C-acetate, 5-14C-mevalonic acid or 14C-methylmethionine. The C27, C28 and C29 sterols incorporate radioactivities but the C26 sterol is unlabelled after each experiment; its possible origin is discussed.  相似文献   

20.
The following sterols have been isolated from the fungi, Phycomyces blakesleeanus and Agaricus campestris: ergosterol, lanosterol, 24-methylene-24,25-dihydrolanosterol and episterol. 4,4-Dimethyl-5α-ergosta-8.24(28)-dien-3β-ol and 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol have been tentatively identified. Evidence for the incorporation of label from l-methionine-[methyl-14C] into some of these sterols in P. blakesleeanus has been obtained. The significance of these sterols in ergosterol biosynthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号