首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探讨CO2浓度升高下不同水稻品种荣优398 (RY)和粤杂889(YZ)吸收重金属Cd差异性的原因,利用水培试验研究了不同浓度Cd处理下两种水稻吸收Cd的差异及根形态的变化特征.结果表明:低Cd处理(5、10、20 μmol·L-1)显著增加水稻生物量;当Cd浓度高于50 μmol·L-1时,Cd胁迫效果开始显现,水稻生物量减少.CO2浓度升高显著增加了水稻的生物量,增加了YZ茎Cd含量而降低了RY茎Cd含量.在5~200 μmol·L-1的Cd浓度下,CO2浓度升高增加了YZ活性根在总根长中的比例,降低了RY活性根的比例.CO2浓度升高下不同水稻品种根形态的变化是导致其对Cd吸收差异性的原因之一.  相似文献   

2.
Cortisol levels of black bream Acanthopagrus butcheri at capture did not change with time of day, gonadal stage or season and were 1·9±0·2 and 2·8±0·4 ng ml−1 for male and female fish, respectively. Confinement resulted in significantly elevated cortisol levels at all time periods; however, levels after 24 h of confinement were significantly lower than peak cortisol levels (15 min for males and 1 h for females). Confinement stress resulted in reduced levels of 17β-oestradiol (E2) and testosterone (T) within 1 h in sexually mature females. In mature males, suppression of T and 11-ketotestosterone (11KT) occurred after 30 min and 6 h of confinement, respectively. The relationship between confinement stress and levels of 17,20β-dihydroxy-4-pregnen-3-one (17,20β P) was more complex, with levels in males being elevated after 15 min and 24 h and suppressed after 6 h of confinement. In contrast, 17, 20β P levels in females were elevated after 1 h of confinement. In regressed females, plasma E2 and T concentrations were low at capture and were not affected by confinement stress whereas plasma 17, 20β P was elevated within 1 h. This study indicates that stress exerts a rapid inhibitory effect on gonadal steroidogenesis.  相似文献   

3.
4.
Oxidative stress has been implicated in mechanisms leading to neuronal cell injury in various pathological states of the brain. Here, we investigated the effect of peroxide exposure on the expression of genes coding for cytoplasmic and endoplasmic reticulum (ER) stress proteins. Primary neuronal cell cultures were exposed to H(2)O(2) for 6 h and mRNA levels of hsp70, grp78, grp94, gadd153 were evaluated by quantitative PCR. In addition, peroxide-induced changes in protein synthesis and cell viability were investigated. Peroxide treatment of cells triggered an almost 12-fold increase in hsp70 mRNA levels, but a significant decrease in grp78, grp94 and gadd153 mRNA levels. To establish whether peroxide exposure blocks the ER-resident stress response, cells were also exposed to thapsigargin (Tg, a specific inhibitor of ER Ca(2+)-ATPase) which has been shown to elicit the ER stress response. Tg exposure induced 7.2-fold, 3.6-fold and 8.8-fold increase in grp78, grp94 and gadd153 mRNA levels, respectively. However, after peroxide pre-exposure, the Tg-induced effect on grp78, grp94 and gadd153 mRNA levels was completely blocked. The results indicate that oxidative damage causes a selective down-regulation of the neuronal stress response activated under conditions of ER dysfunction. This down-regulation was only observed in cultures exposed to peroxide levels which induced severe suppression of protein synthesis and cell injury, implying a causative link between peroxide-induced down-regulation of ER stress response system and development of neuronal cell injury. These observations could have implications for our understanding of the mechanisms underlying neuronal cell injury in pathological states of the brain associated with oxidative damage, including Alzheimer's disease where the neuronal stress response activated under conditions of ER dysfunction has been shown to be down-regulated. Down-regulation of ER stress response may increase the sensitivity of neurones to an otherwise nonlethal form of stress.  相似文献   

5.
采用批次培养方法,在光照强度60、110mol/m2s下分别设置了7个不同的氮、磷浓度(N:0-3500g/L,P:15-775g/L),研究两株布朗葡萄藻(Botryococcus braunii)对氮、磷胁迫的敏感性差异,筛选高营养利用效率的优良藻株。结果表明:两株藻对氮磷营养胁迫的耐受性存在差异,B.braunii764株对氮胁迫具有较高耐受性,而B.braunii765株对磷胁迫具有较高耐受性。光照强度110mol/m2s,不同氮浓度下B.braunii764株其平均生长速率均显著高于其他各处理组;不同磷浓度下B.braunii765株其平均生长速率显著高于B.braunii764株。在试验设定的光照强度条件下,适当增加光照强度能够显著降低氮胁迫对布朗葡萄藻生长的抑制效应。在光照强度110mol/m2s下,氮浓度3500g/L时两株布朗葡萄藻平均生长速率与在正常Chu-10培养基条件下无显著差异。磷浓度775g/L时两株布朗葡萄藻的平均生长速率均显著低于正常Chu-10培养基条件,增加光照强度对磷胁迫下藻细胞的生长无显著作用。两株布朗葡萄藻在第2天时磷吸收与初始磷浓度呈正相关关系,氮吸收在3500g/L时出现饱和现象。布朗葡萄藻的生长更容易受到培养基中磷营养胁迫的影响。    相似文献   

6.
近来的研究表明,一定条件的盐胁迫可导致植物细胞程序性死亡。本文利用DNALaddering、石蜡切片原位检测以及染色体涂片原位检测,从组织、细胞以及DNA等多个方面对盐胁迫下的玉米、水稻和烟草根尖细胞死亡作了研究,形态特别是生化方面的证据表明盐胁迫诱导的植物细胞凋亡可能在植物界具有一定的普遍性。但各个物种之间有一定差异。本实验结果对盐胁迫下的植物生理机制提供了新的研究思路。同时,我们还对基于染色体制片和石蜡切片的原位检测方法进行了比较和讨论。我们认为,基于染色体制片的原位标记技术适合于定性和定量检测单个细胞的凋亡,具有一些石蜡切片所不可及的优点。  相似文献   

7.
Phytohormones play critical roles In regulating plant responses to stress. We Investigated the effects of water stress Induced by adding 12% (w/v) polyethylene glycol to the root medium on the levels of abscisic acid (ABA), indole-3-acid (IAA), zeatin (ZT), and gibberellin3 (GA3) in maize leaves. The results suggested that water stress had significant effects on the four hormone levels. There was a transient increase in the IAA content during the initial stage of adaptation to water stress in maize leaves, but it dropped sharply thereafter in response to water stress. ABA content increased dramatically in maize leaves after 24 h of exposure to water stress, and then the high levels of ABA were maintained to the end, The contents Of ZT and GA3 rapidly declined in maize leaves subjected to water stress. The effects of water stress on chlorophyll content, electrolyte leakage and malondialdehyde levels in maize leaves were also studied. The variation of cell damage was negatively correlated with ZT and GA3 levels in maize leaves under water stress. Thus, we explored the roles of ZT and GA3 on the growth of maize seedlings under water stress by exogenous application. It is possible that both ZT and GA3 were effective in protecting maize seedlings from water stress, which would be of great importance for the improvement of drought tolerance in maize by genetic manipulation.  相似文献   

8.
9.
10.
以耐低氧性具有明显差异的两个网纹甜瓜(Cucumis melo var. raticulalus)品种为试材,研究了根际低氧胁迫下幼苗生长、根系活力及根系呼吸关键酶活性的变化。结果表明,根际低氧胁迫下,两品种幼苗生长均受到明显抑制,而根系活力升高;根系PDC活性两品种均显著提高,品种间无显著差异; MDH活性两品种均显著降低,且耐低氧性弱的‘西域一号’下降幅度较大;根系ADH和LDH活性两品种均显著提高,耐低氧性强的‘东方星光’ADH活性增加的幅度显著高于耐低氧性弱的‘西域一号’,而‘西域一号’LDH活性增加幅度显著高于‘东方星光’。说明‘东方星光’在低氧胁迫下能保持较高的有氧呼吸水平,无氧呼吸的主要途径为乙醇发酵,而‘西域一号’在低氧胁迫下无氧呼吸的主要途径为乳酸发酵。  相似文献   

11.
tRNA aminoacylation, or charging, levels can rapidly change within a cell in response to the environment[1]. Changes in tRNA charging levels in both prokaryotic and eukaryotic cells lead to translational regulation which is a major cellular mechanism of stress response. Familiar examples are the stringent response in E. coli and the Gcn2 stress response pathway in yeast ([2-6]). Recent work in E. coli and S. cerevisiae have shown that tRNA charging patterns are highly dynamic and depends on the type of stress experienced by cells [1, 6, 7]. The highly dynamic, variable nature of tRNA charging makes it essential to determine changes in tRNA charging levels at the genomic scale, in order to fully elucidate cellular response to environmental variations. In this review we present a method for simultaneously measuring the relative charging levels of all tRNAs in S. cerevisiae . While the protocol presented here is for yeast, this protocol has been successfully applied for determining relative charging levels in a wide variety of organisms including E. coli and human cell cultures[7, 8].  相似文献   

12.
Rats fed ethanol (1.74 +/- 0.12 g/day/100 g body wt for 12 weeks) showed a 45% increased microsomal production of O-2 (2.23 +/- 0.14 nmol/min/mg protein) and a 28% increased content of endoplasmic reticulum protein (26.8 +/- 1.4 mg/g liver). This could lead, at substrate saturation, to a 86% increased cytosolic production of O-2 which is not compensated by cytosolic superoxide dismutase levels that remain normal. It is claimed that this unbalance between O-2 production and superoxide dismutase leads to a peroxidative stress in agreement with the 54% increased spontaneous liver chemiluminescence (37 +/- 2 cps/cm2) measured in the ethanol-treated rats. Hydroperoxide-induced chemiluminescence was 57, 43, and 28% higher, respectively, in homogenates, mitochondria, and microsomes isolated from ethanol-treated rats as compared with controls. Vitamins E and A were more effective inhibitors of the hydroperoxide-stimulated chemiluminescence in the liver homogenates from ethanol-treated rats as compared with the effect on the homogenates from control animals. The results are consistent with a peroxidative stress in chronic alcoholism leading to increased lipoperoxidation and decreased levels of antioxidants.  相似文献   

13.
14.
In the present study the relationship between oxidative stress and elevated culture temperature was examined in an industrially relevant fungal culture, Aspergillus niger B1-D. For the first time, both the intracellular levels of the main stressor species (superoxide radical [O(2) (.-)]) and activities of cellular defensive enzymes (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxide [GPx]) were quantified at varying temperature (25, 30, 35, 40 degrees C) to more fully characterize culture response in different growth phases. Elevated culture temperature led to increased O(2) (.-) levels in various culture phases. In the exponential phase this was due to an enhanced generation of O(2) (.-), whereas in stationary phase a decreased dismutation rate may also have contributed. CAT activities generally increased with culture temperature, whereas GPx activity changed little as temperature rose, indicating that GPx played only a minor role in destroying H(2)O(2) in this A. niger. The combination of elevated temperature (35 degrees C) and increased O(2) supply (50% enrichment) led to decreased levels of O(2) (.-) compared to the cultivation at 35 degrees C gassed with air, probably due to enhanced activity of the alternative fungal respiratory pathway. Our findings indicate that while elevated cultivation temperature does clearly induce oxidative stress events, mechanistically, it does so by a rather more complex route than previous studies indicate. Elevated temperature caused a marked disparity in the activities of SOD and CAT, very distinct from the integrated increase in activity of these enzymes in response to oxidative stress.  相似文献   

15.
以山新杨(Populus davidiana×P. alba var. pyramidalisLTP家族基因为研究对象,初步分析该家族基因的序列特征和表达模式,筛选材性和抗性相关PdbLTP基因,为LTP基因的分子调控机制研究及林木遗传改良提供候选基因。通过蛋白性质分析、多序列比对分析、进化树分析初步分析LTP家族基因的序列特征。利用荧光定量PCR(qRT-PCR)分析重力、NaCl及PEG胁迫处理下山新杨LTP家族基因的表达模式。查找获得8条 PdbLTP基因序列,2条亚家族PdbGLTP基因序列。CDS序列长度在294~396 bp。LTP家族蛋白为疏水性蛋白且具有8个半胱氨酸的保守结构。qRT-PCR结果显示,PdbLTP1PdbLTP3PdbLTP5PdbLTP7基因在应拉木中表达上调;PdbLTP1PdbLTP2PdbLTP3PdbLTP5基因在茎中表达量最高;除PdbLTP5外,其它基因均受盐胁迫诱导;PdbLTP1PdbLTP2PdbLTP3、和PdbLTP5受干旱胁迫诱导。PdbLTP基因家族成员在调控山新杨木质部发育和抵抗非生物胁迫中发挥作用。  相似文献   

16.
The definition of relatively stable expressed internal reference genes is essential in both traditional blotting quantification and as a modern data quantitative strategy. Appropriate internal reference genes can accurately standardize the expression abundance of target genes to avoid serious experimental errors. In this study, the expression profiles of ten candidate genes, ACT1, ACT2, GAPDH, eIF1, eIF2, α-TUB, β-TUB, TBP, RNA Pol II and RP II, were calculated for a suitable reference gene selection in Paeonia ostii T. Hong et J. X. Zhang leaves under various drought stress conditions. Data were processed by the four regularly used evaluation software. A comprehensive analysis revealed that RNA Pol II was the most stable gene and eIF2 was the least stable one. In addition, the geNorm program provided the optimal choice of two reference gene combination, RNA Pol II and β-TUB, for qRT-PCR normalization in P. ostii subjected to different drought stress levels. Our research provided convenience for gene expression analysis in P. ostii under drought stress and promoted research of effective methods to alleviate P. ostii drought stress in the future.  相似文献   

17.
采用实时荧光定量PCR方法测定了水稻条纹病毒(Rice stripe virus,RSV)胁迫下抗性不同品种水稻中与脱落酸相关基因的mRNA转录水平变化.结果表明:感病品种武育梗3号中WGPI、OsGASA2、Polcalcin、OsCBIA、Myb和OsCIPK15基因表达水平均上调,上调比率分别为4.96、5.17、2.01、5.17、12.04和7.84.而抗病品系KT 95-418中,OsGASA2和OsCIPK15基因表达水平下调,下调比率分别为1/5.40和1/2.08;Polcalcin和Myb基因表达水平上调,上调比率分别为4.20和3.86;WGPI和OsCBIA表达量变化不明显.这些结果表明,RSV胁迫能诱导脱落酸相关基因表达量的变化,并且在抗病、感病水稻品种中的表达特征不同,从而提示植物激素脱落酸可能调控了RSV胁迫条件下相关基因的表达.  相似文献   

18.
19.
盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响   总被引:11,自引:3,他引:11  
以两个不同抗盐性黄瓜品种为试材,采用营养液水培法,研究了NaCl胁迫对幼苗根系生长和多胺代谢的影响.结果表明:盐胁迫下黄瓜幼苗根系生长受抑制,膜脂过氧化和电解质渗漏升高,而弱抗盐品种‘津春2号'的变化幅度大于抗盐品种‘长春密刺';盐胁迫下‘长春密刺'根系精氨酸脱羧酶、鸟氨酸脱羧酶和S-腺苷蛋氨酸脱羧酶活性升高幅度均大于‘津春2号',其最高值分别比对照增加了149.3%、60.1%、69.4%和118.6%、56.2%、50.6%;'长春密刺'多胺氧化酶活性升高幅度小于‘津春2号',而二胺氧化酶活性仅在‘长春密刺'中增加.'长春密刺'根系游离态亚精胺和精胺、结合态和束缚态多胺含量均显著增加,而‘津春2号'根系游离态腐胺含量显著增加.表明黄瓜根系中较高的游离态亚精胺和精胺、结合态和束缚态多胺以及较低的游离态腐胺含量有利于提高幼苗对盐胁迫逆境的适应能力.  相似文献   

20.
研究了不同浓度(0-200μg.g^-1)菲胁迫和恢复培养后大豆幼苗生长、超氧化物歧化酶(SOD)活性及丙二醛(MDA)含量的变化.结果表明,200μg.g^-1菲处理5d后大豆幼苗生长受到抑制,但幼苗恢复培养后经短暂停滞期后仍可恢复生长.菲污染对大豆幼苗SOD活性变化的剂量—效应关系的作用形式比较复杂,胁迫2d时为线性关系,胁迫5d和8d时为抛物线型.在菲处理前期(2d),幼苗SOD活性被100和200μg.g^-1菲显著诱导[分别为对照的1.15倍(P<0.05)和1.26倍(P<0.01)].菲暴露8d时,SOD活性显著降低,200μg.g^-1菲处理组SOD活性为对照的88%(P<0.05).菲处理5d后恢复培养2d和4d,50和100μg.g^-1菲处理组幼苗SOD活性得到恢复,而200μg.g^-1菲处理组幼苗SOD活性仍明显高于对照(P<0.05).试验亦反映出,100和200μg.g^-1菲处理5d和8d,幼苗MDA含量均比对照显著增加(P<0.05和P<0.01).可以认为,SOD活性可作为大豆幼苗遭受短期菲胁迫的生物标记物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号