首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new acylated triterpenoid saponins named pendulaosides A and B as well as the known phenolic compounds methyl gallate, gallic acid, 1,2,3,6-tera-O-galloyl-β-d-glucose and 1,2,3,4,6-penta-O-galloyl-β-d-glucose, were isolated from the seeds of Harpullia pendula. The structures of pendulaosides A and B were determined using extensive 1D and 2D NMR analysis and mass spectrometry as well as acid hydrolysis, as 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene, respectively. To the best of our knowledge the two triterpene parts 22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene have never been characterized before. The two isolated saponins were assayed for their in-vitro cytotoxic activity against the three human tumor cell lines HepG2, MCF7 and PC3. The results showed that pendulaoside A exhibited moderate activity on PC3 cell line with IC50value equal to 13.0 μM and weak activity on HepG2 cell line with IC50 value equal to 41.0 μM. Pendulaoside B proved to be inactive against the three used cell lines.  相似文献   

2.
After partial, acid hydrolysis of the extracellular, acid polysaccharide from Rh. trifolii Bart A, the following products were isolated and characterized: 3,4-O-(1-carboxyethylidene)-d-galactose, 4,6-O-(1-carboxyethylidene)-d-galactose, 3-O-[3,4-O-(1-carboxyethylidene)-β-d)-galactopyranosyl]-d-glucose, 3-O-[4,6-O-(1-carboxyethylidene)-β-d-galactopyranosyl]-d-glucose, O-[3,4-O-(1-carboxyethylidene)-β-d-galactopyranosyl ]-(1→3)-O-d-glucopyranosyl-(1→4)-d-glucose, and O-[4,6-O-(1- carboxyethylidene)-β-d-galactopyranosyl]-(1→3)-O-β-d-glucopyranosyl-(1→4)-d-glucose. The presence of pyruvic acid linked either to O-3 and O-4 or to O-4 and O-6 of the d-galactopyranosyl group of these saccharides indicates that both structures may be present in the original polysaccharide.  相似文献   

3.
Partial, acid hydrolysis of the extracellular polysaccharide from Xanthomonas campestris gave products that were identified as cellobiose, 2-O-(β-d-glucopyranosyluronic acid)-d-mannose, O(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-d-glucose, O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)]-d-glucose, and O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-glucose. This and other evidence supports the following polysaccharide structure (1) which has been proposed independently by Jansson, Kenne, and Lindberg:
  相似文献   

4.
In the course of a chemotaxonomical study of Castanopsis species (Fagaceae), detailed investigation of the leaves of C. sclerophylla led to isolation of three new phenolic compounds together with 62 known compounds. The structures of the new compounds were elucidated as 2-O-galloyl-O-4,6-(S)-valoneoyl-d-glucose (1), 6-O-galloyl-1-O-vanilloyl-β-d-glucose (2), and 4″-O-galloylchestanin (3) by means of spectroscopic analyses and enzymatic hydrolysis with tannase. Comparison with other Castanopsis species indicated that C. sclerophylla characteristically accumulates chlorogenic acid and a dimeric ellagitannin, rugosin E. Triterpene hexahydroxydiphenoyl esters, which are major constituents of C. cuspidata var. sieboldii, C. hystrix, and C. fissa were not detected.  相似文献   

5.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

6.
A new sinapic acid ester has been isolated and characterized as 1(E),2(E)-di-O-sinapoyl-β-d-glucopyranoside from cotyledons of dark-grown red radish (Raphanus sativus) seedlings. Its structure was elucidated by negative ion fast atom bombardment mass spectrometry, 1H and 13C NMR spectra and enzymatic determination of the glucose moiety. A possible biosynthetic mechanism for the formation of this new ester is discussed in which the energy-rich acyl glucoside 1-O-sinapoyl-β-d-glucose acts as the acyl donor in a sinapoyl transfer to the hydroxyl group at C-2 of the glucose moiety of another molecule of 1-O-sinapoyl-β-d-glucose (‘disproportionation’).  相似文献   

7.
A new ellagitannin, punicafolin has been isolated from the leaves of Punica granatum and characterized by physicochemical data and spectral evidence as 1,2,4-tri-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-β-D-glucose. The occurrence in the leaves of the known tannins, granatins A and B, corilagin, strictinin, 1,2,4,6-tetra-O-galloyl-β-D-glucose and 1,2,3,4,6-penta-O-galloyl-β-D-glucose has also been demonstrated.  相似文献   

8.
A new pregnane ester diglycoside named desinine has been isolated from the dried twigs of Hemidesmus indicus. On the basis of chemical and spectroscopic evidence, its structure has been established as drevogenin B-3-O-β-D-oleandropyranosyl-(1→4)-β-D-oleandropyranoside.  相似文献   

9.
Phytochemical investigation of the ethyl acetate fraction of the methanol extract of the leaves of Ixora coccinea led to the isolation and identification of an A-type trimeric proanthocyanidin epicatechin-(2β  O  7, 4β  8)–epicatechin-(5  O  2β, 6  4β)–epicatechin named ixoratannin A-2 along with seven known compounds, epicatechin, procyanidin A2, cinnamtannin B-1, and four flavon-3-ol rhamnosides viz: kaempferol-7-O-α-l-rhamnnoside, kaempferol-3-O-α-l-rhamnoside, quercetin-3-O-α-l-rhamnopyranoside, and kaempferol-3,7-O-α-l-dirhamnoside. The structures were elucidated by the application of IR, UV, MS, 1D-, and 2D-NMR spectroscopic analyses and by comparison with literature data. Antioxidant evaluation of isolated compounds revealed that ixoratannin A-2 and cinnamtannin B-1 were the most active compounds in DPPH, inhibition of lipid peroxidation and nitric oxide radical scavenging assays. Antibacterial activities were assessed by means of agar-diffusion assays using Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis. All tested compounds inhibited the growth of B. subtilis, while only epicatechin and quercetin-3-O-α-l-rhamnopyranoside inhibited the growth of E. coli.  相似文献   

10.
A new furan-2-carbonyl C-(6′-O-galloyl)-β-glucopyranoside (scleropentaside F, 1) and a new alkyl glucoside [butane-2,3-diol 2-(6′-O-galloyl)-O-β-glucopyranoside, 2] were isolated from the entire hemi-parasitic plant, Dendrophthoe pentandra growing on Tectona grandis together with ten known compounds including, benzyl-O-β-d-glucopyranoside (3), benzyl-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (4), benzyl-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (5), methyl gallate 3-O-β-d-glucopyranoside (6), methyl gallate 3-O-(6′-O-galloyl)-β-d-glucopyranoside (7), (+)-catechin (8), procyanidin B-1 (9) and procyanidin B-3 (10), bridelionoside A (11), and kiwiionoside (12). In addition, compounds 1, 39 were isolated from this species growing on the different host, Mangifera indica. The structure elucidations were based on physical data and spectroscopic evidence including 1D and 2D experiments.  相似文献   

11.
《Phytochemistry》1986,25(12):2861-2865
Five new glycosides were isolated from the Chinese crude drug ‘Tong-guang-san’: the stems of Marsdenia tenacissima (Roth.) Wight et Arn. (Asclepiadaceae). The structures of tenacissosides A-E were deduced on the basis of chemical and spectral evidence as tenacigenin B-I 3-O-β-D-glucopyranosyl-(1→4)-3-O-methyl-6-deoxy-β-D- allopyranosyl-(1→4)-β-D-oleandropyranoside, tenacigenin B-II 3-O-β-D-glucopyranosyl-(1 →4)-3-O-methyl-6-deoxy- β-Dallopyranosyl-(1 →4)-β-D-oleandropyranoside, tenacigenin B-III 3-O-β-Dglucopyranosyl-(1→4)-3-O-methyl-6- deoxy-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranoside, tenacigenin B-IV 3-O-β-D-glucopyranosyl-(1 →4)-3-O- methyl-6-deoxy-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranoside and tenacigenin B-V 3-O-β-D-glucopyranosyl- (1 → 4)-3-O-methyl-6-deoxy-allopyranosyl-(1 → 4)-β-D-oleandropyranoside, respectively.  相似文献   

12.
The transformation of (5R)-2,6-di-O-benzyl-5-C-methoxy-β-d-galactopyranosyl-(1→4)-2,3:5,6-di-O-isopropylidene-aldehydo-d-glucose dimethyl acetal (8) into partially protected derivatives of d-xylo- and l-lyxo-aldohexos-5-ulose has been reported, applying appropriate epimerisation methods to its 3′-O- and 4′-O-protected alcoholic derivatives.  相似文献   

13.
《Phytochemistry》1987,26(6):1805-1810
Three new phenylpropanoid glycosides, mussatioside I, mussatioside II and mussatioside III were isolated from the methanolic extract of the bark of a new Mussatia species. On the basis of the chemical and spectral evidence their structures were determined as [β-(4′-hydroxyphenyl)ethyl-O-β-D-glucopyranosyl(6 → 1)]-O-β-D-xylopyranosyl(1 → 3)-α-L-(4-O-t-cinnamoyl)rhamnopyranoside, [β-(4′-hydroxyphenyl)-ethyl-O-β-D-glucopyranosyl(6 → 1)]-O-β-D-xylopyranosyl(1 → 3)-α-L-(4-O-dimethylcaffeoyl)rhamnopyranoside and [β-(4′-hydroxyphenyl)ethyl-O-β-D-glucopyranosyl(6 → 1)]-O-β-D-xylopyranosyl(1 → 3)-α-L-(4-O-p-methylcoumaroyl)rhamnopyranoside, respectively. M. hyacinthina was also found to contain mussatioside I.  相似文献   

14.
Four novel 3,28-O-bisglycosidic triterpenoid saponins were isolated from the mature fruits of F. japonica. They were characterized as the 28-O-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-β- d-glucopyranosides of 3-O-α-l-arabinopyranosyl echinocystic acid, 3-O-α-l-arabinopyranosyl hederagenin, 3-O-β-d-glucopyranosyl-(1 → 2)-α-l-arabinopyranosyl oleanolic acid and 3-O-β- d-glucopyranosyl-(1 → 2)-α-l-arabinopyranosyl hederagenin respectively.  相似文献   

15.
Methyl 2-acetamido-5,6-di-O-benzyl-2-deoxy-β-d-glucofuranoside (11) was obtained in six steps from the known methyl 3-O-allyl-2-benzamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside. Mild acid hydrolysis, followed by benzylation gave the 5,6-dibenzyl ether. The benzamido group was exchanged for an acetamido group by strong alkaline hydrolysis, followed by N-acetylation, and the allyl group was isomerized into a 1-propenyl group that was hydrolyzed with mercuric chloride. Treatment of 11 with l-α-chloropropionic acid and with diazomethabe gave methyl 2-acetamido-5,6-di-O-benzyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucofuranoside which formed on mercaptolysis the internal ester 16, further converted into 2-acetamido-4-O-acetyl-5,6-di-O-benzyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-d-glucose diethyl dithioacetal (18) by alkaline treatment followed by esterification with diazomethane and acetylation. Attempts to remove the O-acetyl group of the corresponding dimethyl acetal 20 with sodium methoxide in mild conditions were not successful.  相似文献   

16.
《Phytochemistry》1986,26(1):229-235
A triterpenoid saponin mixture (so-called quillajasaponin) obtained from the bark of Quillaja saponaria was treated with weak alkali and two major desacylsaponins were isolated. On the basis of chemical and spectral evidence, they were determined as 3-O-β-D-galactopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-apiofuranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranoside and 28-O-β-D-apiofuranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-[β-D-glucopyranosyl-(1 → 3)]-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranoside. Diazomethane degradation providing selectively the 28-O-glycoside from the 3,28-O-bisglycoside was a useful method for the structure elucidation.  相似文献   

17.
The structure of the capsular polysaccharide (S-XIX) of Pneumococcus Type XIX, which contains residues of d-glucose, l-rhamnose, 2-acetamido-2-deoxy- d-mannose, and phosphate, has been investigated by acid hydrolysis, treatment with acid phosphatase, mass spectrometry, and 13C-n.m.r. spectroscopy. Phosphoric esters in S-XIX were largely resistant to hydrolysis (4M HCl, 100°, 3 h). With M or 2M HCl at 100° for 3 h, 4-O-(2-amino-2-deoxy-β-d-mannopyranosyl)-d-glucose 4′-phosphate was liberated. More-drastic hydrolysis of S-XIX gave 2-amino-2-deoxy-d-mannose 3-, 4-, and 6-phosphates, and 4-O-(2-amino-2-deoxy-d-mannopyranosyl)-d-glucose and its 4′-phosphate.  相似文献   

18.
Three new ellagitannins, gemin D, E and F were isolated from the leaves of Geum japonicum. The structures of gemin D and F were established as 3-O-galloyl-4,6-O-[(S-hexahydroxydiphenoyl]-D-glucose and 6-O-caffeoyl-2,3-O-[(S-hexahydroxydiphenoyl]-D-glucose, respectively. Gemin E is a novel C-glucosidic ellagitanin having a dehydrohexahydroxydiphenoyl group in the molecule. Gemin D was also isolated from the flower buds of Camellia japonica.  相似文献   

19.
Thirty-four polyphenolic substances in methanol extracts of the fruits of Terminalia bellerica, Terminalia chebula and Terminalia horrida, three plants used in Egyptian folk medicine, were initially identified by HPLC-ESI-MS and quantitated by analytical HPLC after column chromatography on Sephadex LH-20. After purification by semi-preparative HPLC the compounds were identified by their mass and fragmentation patterns using ESI-MS-MS. For several compounds detailed 1H/13C NMR analysis at 600 MHz was performed. Two polyphenolics, namely 4-O-(4″-O-galloyl-α-l-rhamnopyranosyl)ellagic acid and 4-O-(3″,4″-di-O-galloyl-α-l-rhamnopyranosyl)ellagic acid were identified by NMR. Antioxidant capacities of the raw fruit extracts and the major isolated substances were determined using the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), oxygen radical absorbance capacity (ORAC) and ferric reducing ability of plasma (FRAP) in vitro assays and indicated that chebulic ellagitannins have high activity which may correlate with high potential as cancer chemopreventive agents. Therefore, further studies (metabolism, bioavailability and toxicity) of the polyphenolics in Terminalia species using preclinical models and in vivo human intervention trials are warranted.  相似文献   

20.
Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1.The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号