首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. R. Berenbaum 《Oecologia》1981,49(2):236-244
Summary Seasonal changes in the distribution and abundance of furanocoumarins in wild parsnip, Pastinaca sativa (Umbelliferae), were examined in a population of plants in Tompkins County, New York. Xanthotoxin, imperatorin and bergapten (linear furanocoumarins) occur in all above-ground parts of the plant; in addition, angelicin and sphondin (angular furanocoumarins) occur in umbels of some individuals. Total furanocoumarin content, as measured by percent dry weight, is greatest in reproductive parts, particularly buds and seeds; variation in concentrations between plants is greatest in vegetative structures (e.g., leaves).Within the plant, the distribution of furanocoumarins is significantly correlated with nitrogen, as opposed to biomass, allocation. In that nitrogen is often a factor limiting the plant growth, furanocoumarins appear to be allocated in proportion to plant tissue value; reproductive structures, obvious contributors to plant fitness, contain over ten times the amount of nitrogen and furanocoumarin contained in vegetative structures such as senescent leaves.Stepwise multiple regression analysis revealed that generalized insect herbivores tend to feed on plants or plant parts low in furanocoumarin content and, correspondingly, low in nitrogen content. Parsnip specialists, notably Depressaria pastinacella (Lepidoptera: Oecophoridae), feed exclusively on umbels, plant parts rich in nitrogen and furanocoumarins; furanocoumarin number and content in fact account for over 60% of the variance in number of umbel feeders. These patterns conform with previous determinations of the toxicological properties of furanocoumarins. Nitrogen is known to affect growth rate, fecundity, longevity and survivorship of insect herbivores; by tolerating or detoxifying furanocoumarins, D. pastinacella can consume plant tissues containing significantly greater amounts of nitrogen than tissues consumed by generalist feeders. That the presence of D. pastinacella on individual plants is correlated with the number of furanocoumarins present is consistent with the hypothesis that parsnip specialists use angular furanocoumarins as host recognition cues.  相似文献   

2.
Depressaria pastinacella, the parsnip webworm, feeds almost exclusively on the flowers and fruits of Pastinaca sativa, the wild parsnip. Resistance to webworms in wild parsnip populations is largely attributable to genetically based variation in furanocoumarin chemistry; by differentially reducing fruit set among chemical phenotypes, parsnip webworms may act as selective agents on wild parsnip populations. To determine whether wild parsnip chemistry can act as a selective agent on webworm populations, it is necessary to establish that resistance mechanisms in the webworm to furanocoumarins are genetically based. In this study, we estimated the amount of genetic variation in behavioral and physiological responses of webworms to parsnip furanocoumarins. Virtually no variation was found among webworm families for feeding preferences for diets varying as much as fourfold in furanocoumarin content. Nor was significant variation found for mean furanocoumarin intake over the assay period, except in one case, in which maternal effects may account for differences among families. In contrast, substantial familial variation existed for cytochrome P450–mediated metabolism of bergapten and xanthotoxin, two host furanocoumarins. The presence of additive genetic variation in metabolism, and the absence of such variation in discriminative feeding behavior, suggests that adaptation to changes in furanocoumarin chemistry, resulting either from changes in the distribution of chemical phenotypes in parsnip populations or from shifts to new chemically different host plants, is likely to be facilitated by physiological rather than behavioral means.  相似文献   

3.
The factors influencing the allocation of chemical defences to plant offspring have largely been unexplored, conceptually and experimentally. Because evolutionary interactions between maternal plants and their progeny can affect resource allocation patterns among sibling offspring, we suggest that kin conflict as well as herbivore–plant interaction theories need to be considered to predict chemical defence allocation patterns. Optimal defence theory predicts that maternal plants should defend more heavily those offspring in which resources have been disproportionately invested. In contrast, kin conflict theory predicts that natural selection will favour genotypes that can compete successfully for maternal defences irrespective of their quality, even at the expense of the fitness of siblings and the maternal plant. Evidence for these defence patterns were evaluated by examining the allocation of furanocoumarins to seeds of the wild parsnip (Pastinaca sativa, Apiaceae). Furanocoumarins are toxins that are localized within the oil tubes of the maternal tissues of seeds. We evaluated the role of offspring investment (endosperm mass) and seed genotype on furanocoumarin allocation by mating an array of pollen donors with pollen recipients. Furanocoumarins were found to be positively correlated with endosperm mass on one side of the seed, a result consistent with optimal defence theory; however, on the other side of the seed, furanocoumarin content was influenced by seed genotype and was unrelated to endosperm mass. These effects varied with maternal plant. Further experiments demonstrated that nearly 80% of furanocoumarin production occurs after pollination, when fertilization products are active. Although the amount of furanocoumarin influenced by the seed genotype is small relative to the total quantity in the seed, these furanocoumarins are the first line of defence against important predators, such as the parsnip webworm, Depressaria pastinacella (Lepidoptera: Oecophoridae). We found that parsnip webworm larvae were able to discriminate among genotypes within an inflorescence. In line with previous studies, these results suggest that a genotype's ability to influence furanocoumarin defence may affect its probability of survival. We conclude that the distribution of defences among plant offspring in wild parsnip is probably influenced by competition among seed genotypes that conflicts with maternal optimal defence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the “grapefruit juice effect”. Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas) and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas) synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus varieties for use in creating species devoid of these toxic compounds in future breeding programs.  相似文献   

5.
The parsnip webworm (Depressaria pastinacella) and the wild parsnip (Pastinaca sativa) together represent a potentially “coevolved” system in that throughout their ranges the plant has relatively few other herbivores and the insect has virtually no other hosts. Individual wild parsnip plants within a central Illinois population vary in their content and composition of furanocoumarins, secondary compounds with insecticidal properties. Half-sib and parent-offspring regression estimates of the heritability of furanocoumarins demonstrate that this variation is genetically based. Wild parsnip plants also vary in their resistance to damage by the parsnip webworm, which feeds on flowers and developing seeds. In an experimental garden, seed production in the primary umbel ranged from 0 to 1,664 seeds among individuals, and mean seed production of half-sib families ranged from 3.7 seeds to 446.0 seeds. Approximately 75% of the variation in resistance among half-sib families to D. pastinacella was attributable to four furanocoumarin characteristics—resistance is positively related to the proportion of bergapten and the amount of sphondin in seeds, and negatively related to the amount of bergapten and the proportion of sphondin in leaves. Each of the four resistance factors had significant heritability. Thus, resistance in wild parsnip to the parsnip webworm is to a large extent chemically based and genetically controlled. Genetic correlations among fitness and resistance characters, however, tend to limit coevolutionary responses between herbivore and plant. In greenhouse plants protected from herbivory, several of the resistance factors have negative genetic correlations with potential seed production. Ostensibly, highly resistant plants in the absence of herbivory would be at a competitive disadvantage in the field. The selective impact of the herbivore is also limited in this population by a negative genetic correlation among resistance factors. Selection to increase one resistance factor (e.g., the proportion of bergapten in the seed) would at the same time decrease the amount of a second resistance factor (e.g., the amount of sphondin in the seed). The wild parsnip and the parsnip webworm, then, appear to have reached an evolutionary “stalemate” in the coevolutionary arms race.  相似文献   

6.
A recurring theme in defense allocation theories is that defenses are costly. Most studies that attempt to quantify a cost of defense seek to establish a trade-off between a component of plant fitness and the level of a constitutive defense. Such estimates are ambiguous because they cannot discount the cost of traits that are correlated with defense but are not themselves defensive. We examined the effects of damage-induced synthesis of furanocoumarins, known defense compounds, on the growth of wild parsnip. Plants that had 2% of their leaf area removed accumulated 8.6% less total biomass and 14% less root biomass than intact plants over a 4-week period. We also found that this small amount of leaf damage significantly reduced net photosynthetic rates 0.5 h after damage; the effect was temporary, as photosynthetic rates were no longer significantly different after 48 h. Lastly, we found that increases in respiration rates associated with damage coincided spatially and temporally with increases in furanocoumarin production, and that respiration increases were phenotypically correlated with furanocoumarin production. When damage-induced changes in furanocoumarin content and respiration rates were expressed in glucose equivalents and compared, the energetic cost of furanocoumarin production (12.6 μg glucose cm−2) accounted for all of the increase in respiration (12.0 μg glucose cm−2). A comparison of other secondary compounds in damaged and intact leaflets revealed that myristicin, a furanocoumarin synergist, is the only other compound aside from furanocoumarins that is inducible. The inducible defense system of wild parsnip thus appears to involve a small subset of secondary compounds. Synthesis of these compounds is tightly linked to damage-induced rates of respiration. Because the negative impact that damage had on the rate of net photosynthesis was short-lived, the impact of damage on growth observed in this study was likely due to the cost of furanocoumarin synthesis elicited by damage rather than the loss of photosynthetic tissue caused by damage. Received: 4 April 1996 / Accepted: 29 August 1996  相似文献   

7.
Furanocoumarins constitute a sub‐family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub‐groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane‐bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8‐prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin‐producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4–coumaroyl CoA 2'–hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.  相似文献   

8.
Host plant identity and host plant chemistry have often been shown to influence host finding and acceptance by natural enemies but comparatively less attention has been paid to the tritrophic effects of host plant and host plant chemistry on other natural enemy fitness correlates, such as survivorship, clutch size, body size, and sex ratio. Such studies are central to understanding both the selective impact of plants on natural enemies as well as the potential for reciprocal selective impact of natural enemies on plant traits. We examined the effects of host plant and host plant chemistry in a tritrophic system consisting of three apiaceous plants (Pastinaca sativa, Heracleum sphondylium and H. mantegazzianum), the parsnip webworm (Depressaria pastinacella) and the polyembryonic parasitic wasp Copidosoma sosares. All of these plants produce furanocoumarins, known resistance factors for parsnip webworms. Furanocoumarin concentrations were correlated neither with the presence nor the number of webworms on a given plant. Concentrations of two furanocoumarins were negatively associated with C. sosares fitness correlates: isopimpinellin with the likelihood that a given webworm would be parasitized and xanthotoxin with both within‐brood survivorship (of all‐male and mixed‐sex broods) and clutch size. Brood sex ratio and body sizes of individual wasps were not correlated with furanocoumarin chemistry. Because additive genetic variation exists in P. sativa for furanocoumarin chemical traits, these are subject to selection by webworms through herbivory. Third trophic level selective impacts on furanocoumarin traits may include selection for reduced production of those chemicals that affect parasitoid survivorship yet do not influence host plant choice by the herbivore. That such might be the case is suggested by patterns of furanocoumarin production in populations of P. sativa with different histories of infestation; in the Netherlands, where parasitism rates of webworms by C. sosares are high, plants produce lower levels of all linear furanocoumarins and proportionately less isopimpinellin than do midwestern U.S. populations of P. sativa, where natural enemies of the webworm are effectively absent.  相似文献   

9.
Fungal endophytes of grasses are often included in agricultural management and in ecological studies of natural grass populations. In European agriculture and ecological studies, however, grass endophytes are largely ignored. In this study, we determined endophyte infection frequencies of 13 European cultivars and 49 wild tall fescue (Schedonorus phoenix) populations in Northern Europe. We then examined seed production and seed predation of endophyte-infected (E+) and endophyte-free (E?) tall fescue (in wild grass populations and in a field experiment) and meadow fescue (Schedonorus pratensis; in a field experiment only). Endophytes were detected in only one of the 13 cultivars. In contrast, >90% of wild tall fescue plants harbored endophytes in 45 wild populations but were absent in three inland populations in Estonia. In three wild tall fescue study sites, 17%, 22%, and 56% of the seeds were preyed upon by the cocksfoot moth. Endophyte infection did not affect seed mass of tall fescue in the field experiment. However, seed predation was lower in E+ than E? grasses in the two tall fescue populations with higher predation rates. For meadow fescue, the mean number of seeds from E+ plants was higher than E? plants, but E? and E+ seeds had equal rates of predation by the moth. Our results suggest that the effects of grass endophytes on seed production and cocksfoot moth seed predation vary considerably among grass species, and the effects may depend on herbivore pressure and other environmental conditions.  相似文献   

10.
Using in situ RNA/RNA hybridization, enzyme immunolocalization, and histochemical techniques, several phenylpropanoid biosynthetic activities and products were localized in tissue sections from various aerial parts of parsley (Petroselinum crispum) plants at different developmental stages. The enzymes and corresponding mRNAs analyzed included two representatives of general phenylpropanoid metabolism: phenylalanine ammonia-lyase (PAL) and 4-coumarate: CoA ligase (4CL), and one representative each from two distinct branch pathways: chalcone synthase (CHS; flavonoids) and S-adenosyl-L-methionine: bergaptol O-methyltransferase (BMT; furanocoumarins). In almost all cases, the relative timing of accumulation differed greatly for mRNA and protein and indicated short expression periods and short half-lives for all mRNAs as compared to the proteins. PAL and 4CL occurred almost ubiquitously in cell type-specific patterns, and their mRNAs and proteins were always coordinately expressed, whereas the cell type-specific localization of flavonoid and furanocoumarin biosynthetic activities was to a large extent mutually exclusive. However, the distribution patterns of CHS and BMT, when superimposed, closely matched those of PAL and 4CL in nearly all tissues analysed, suggesting that the flavonoid and furanocoumarin pathways together consituted a large majority of the total phenylpropanoid biosynthetic activity. Differential sites of synthesis and accumulation indicating intercellular translocation were observed both for flavonoids and for furanocoumarins in oil ducts and the surrounding tissue. The widespread occurrence of both classes of compounds, as well as selected, pathway-specific mRNAs and enzymes, in many cell types of all parsley organs including various flower parts suggests additional functions beyond the previously established roles of flavonoids in UV protection and furanocoumarins in pathogen defence.  相似文献   

11.
The ubiquitous occurrence of series of biosynthetically related plant secondary compounds within individual species has given rise to the suggestion that such multiplicity is adaptive; one possible mechanism that would serve to maintain such within-plant diversity is analog synergism. In a series of experiments, we provide evidence that synergism may account for the presence of multiple structurally related furanocoumarins in apiaceous plants. The black swallowtail, Papilio polyxenes, feeds exclusively on plant species containing furanocoumarins. Growth of larvae fed parsley leaves treated with both xanthotoxin and angelicin, two furanocoumarins that co-occur widely in swallowtail hostplants, was significantly slower than that of larvae fed leaves with an equimolar concentration of either xanthotoxin or angelicin. A multivariate combination of growth, food consumption and frass excretion differed significantly between larvae fed leaves treated with both xanthotoxin and angelicin and larvae fed leaves treated with angelicin alone. In addition, we measured rates of in vitro cytochrome P450-mediated metabolism of three furanocoumarins — bergapten, xanthotoxin, and angelicin. While bergapten and xanthotoxin, both linear furanocoumarins, were metabolized at similar rates (8.07 and 9.86 nmoles/min/g fw caterpillar, respectively), angelicin, an angular furanocoumarin, was metabolized more slowly (2.76 nmoles/min/g fw caterpillar). When all three furanocoumarins were assayed together, overall rates of metabolism were significantly reduced, suggesting substrate inhibition. Thus, the pattern of growth of larvae is consistent with the pattern of in vitro metabolism and is evidence in support of analog synergism. In a separate experiment, metabolism of xanthotoxin and angelicin individually and together were compared in six maternal families. Again, angelicin was metabolized more slowly than xanthotoxin and each furanocoumarin inhibited metabolism of the other. That significant family effects were found for rates of metabolism and for the ratio of moles of angelicin metabolized for each mole of xanthotoxin metabolized raises the possibility that genetic variation exists for the rate and specificity of metabolism and suggests that insect herbivores may be able to adapt to analog synergism.  相似文献   

12.
One challenge in the heterologous expression of microsomal cytochrome P450 monooxygenases (P450s) is fulfilling their obligatory requirement for electrons transferred from NADPH P450 reductase. We have established co-expression parameters for Papilio polyxenes CYP6B1 and house fly P450 reductase in baculovirus-infected Sf9 cells that allow for efficient expression of both components and significantly enhance metabolic turnover of this insect P450's substrates. These expression conditions have allowed us to reexamine the turnover capacities of CYP6B1 toward linear and angular furanocoumarins present in the host plants for the specialist caterpillar P. polyxenes. Coexpression of CYP6B1 and P450 reductase at equivalent viral concentrations [MOI (multiplicity of infection) ratio of 1] results in turnover rates for the linear furanocoumarins xanthotoxin and psoralen, which are increased 32-33 fold over the turnover rates obtained with CYP6B1 expressed alone. The turnover rate for the angular furanocoumarin angelicin is also significantly increased to 4.76 nmol/min/nmol P450 compared to its barely detectable level obtained with CYP6B1 expressed alone. Substrate binding analyses indicate that all three of these compounds elicit typical type I binding spectra but with varying magnitudes and affinities that are indicative of each substrate's effectiveness at coordinating with the heme iron. The relative proportions of high spin state generated with these substrates are consistent with CYP6B1 metabolizing these furanocoumarins in the rank order xanthotoxin>psoralen>angelicin. These differential activities for CYP6B1 suggest that it may have been an ancient participant in the coevolutionary arms race between papilionid butterflies and their apiaceous host plants. Due to its ability to handle a range of furanocoumarin structures, CYP6B1 may have contributed to P. polyxenes' early colonization of linear furanocoumarin-containing plants and to its subsequent colonization of angular furanocoumarin-containing plants.  相似文献   

13.
Cell cultures of Ruta graveolens L. were used as a model system to study the relationship between cellular organization and furanocoumarin production. Relative contributions of individual cells were traced using a combination of biochemical and localization techniques in three types of cell cultures: dispersed, aggregated, and organized. The proportion of relative furanocoumarins produced varied with the organization level in cultures. Productive population in dispersed cell culture was 10% which increased to 17% and to 35% in aggregated and organized cell cultures, respectively. Large cell clusters accumulating furanocoumarins were restricted to organized cell cultures. In these lines, sites for psoralen, bergapten, and xanthotoxin accumulation were spatially separated from each other, which has been reported for the first time. Variation in production was due to change in relative size of productive population in the three types of cultures studied. A model has been proposed for differential furanocoumarin producing ability of cells based on differentiation levels.  相似文献   

14.
Abstract. 1. Examination of phytochemical literature reveals that a disproportionately large number of hostplants for species in the genus Papilio Section II, and in particular the machaon complex, contain linear furanocoumarins.
2. Although the linear furanocoumarin xanthotoxin is known to be toxic to generalist lepidopterous larvae, it failed to affect adversely the growth and survivorship of Papilio polyxenes , a member of the P.machaon complex that feeds primarily on Umbelliferae containing furanocoumarins, when incorporated into an artificial diet.
3. On the contrary, growth rate and weight gain were significantly improved in the presence of xanthotoxin.
4. It is proposed, based on this experimental evidence and on hostplant utilization patterns, that furanocoumarins play a significant role in the behavioural and biochemical adaptation of Papilio species to their umbelliferous hosts.  相似文献   

15.
Dark-grown cell suspension cultures of parsley, Petroselinum hortense, produce furanocoumarins after treatment with elicitor preparations of either Phytophthora megasperma f.sp. glycinea (Pmg elicitor) or Alternaria carthami Chowdhury (Ac elicitor). The linear furanocoumarins, psoralen and xanthotoxin, and the benzodipyrandione, graveolone, are the major products synthesized in response to Pmg elicitor, besides small amounts of the furanocoumarin bergapten. Treatment with Ac elicitor induces predominantly the formation of bergapten and the furanocoumarin isopimpinellin, as well as small amounts of graveolone. While Pmg elicitor leads to cell death within a few days, cell mass increased for at least 6 days after treatment with Ac elicitor. Brefeldin A, a phytotoxin produced by A. carthami, inhibits growth of parsley cell suspension cultures considerably at a concentration of 0.01 mM and growth of the cells ceased at a concentration of 0.1 mM toxin. Concomitantly, furanocoumarin biosynthesis was suppressed in our system by a concentration of brefeldin A within 0.01-0.1 mM.  相似文献   

16.
We assessed the effects of three photoactivated linear furanocoumarins, secondary plant metabolites present in Apium spp. (Apiaceae) and other taxa, on the larval-pupal parasitoid, Archytas marmoratus (Townsend) (Diptera: Tachinidae) and the host Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), in the presence and absence of ultraviolet radiation. These results then were compared with previously described responses of Archytas marmoratus and other hosts to different plant allelochemicals. Ultraviolet radiation had no consistent detrimental effects. Increasing concentrations of linear furanocoumarins (from 0 to 0.029% of fresh weight) increased mortality of both the host and parasitoid. Increasing linear furanocoumarin levels also prolonged larval development of surviving S. exigua, but had no effect on pupal developmental time or pupal mass. Consequently, there was no effect of increasing linear furanocoumarin levels on surviving parasitoid development time (from the time of host pupation) or size. These results indicate the effects of linear furanocoumarins are mediated through effects on the host. Because reported responses of Ar. marmoratus to other allelochemicals (e.g., flavones, methyl ketones) are mediated through host effects, these results support the hypothesis that Ar. marmoratus displays a generalized response to plant allelochemicals that are predictable based on host mediated effects.  相似文献   

17.
Plant domestication is assumed to result in reduced levels of defensive compounds in crops, because this makes the plants more suitable for consumption by humans and livestock. We argue that this should mainly be reflected in the concentrations of defense compounds in the plant parts that are used for consumption and not necessarily for other parts of crop plants. We tested this hypothesis for domesticated lima bean (Phaseolus lunatus), by comparing its chemical defenses against a leaf herbivore, the beet armyworm (Spodoptera exigua), and a seed predator, the beetle Zabrotes subfasciatus. For seeds and leaves we determined the concentrations of cyanogenic glycosides (CNGs) in cultivated varieties and wild populations and evaluated the preference and performance of the herbivores when exposed to leaves and seeds from wild and cultivated plants. Concentrations of CNGs were significantly different between wild and cultivated plants. In the leaves the concentration of CNGs in the cultivated varieties were more than double that of the wild leaves. In contrast, seeds from cultivated plants had up to 20 times lower CNG concentration compared to seeds from the wild populations. Insect preference and performance do not parallel the chemical data. Larvae of S. exigua preferred wild leaves but had higher survival on cultivated leaves. The beetles, however, strongly preferred seeds from cultivated plants and females developed more quickly on these seeds. We conclude that domestication of P. lunatus has altered the concentration of CNGs in both the seeds and the leaves in opposite directions. This results in differential effects on the herbivores that attack these two plant structures. The contrasting effect of domestication on different plant tissues can be explained by the fact that bean plants have been specifically selected for human consumption of the seeds. Tissue-specific effects of plant domestication on plant defenses can be expected for other crops as well.  相似文献   

18.
The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two “lowland” cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels.  相似文献   

19.
ABSTRACT: BACKGROUND: Furanocoumarins are molecules with proven therapeutic properties and are produced in only a small number of medicinal plant species such as Ruta graveolens. In vivo, these molecules play a protective role against phytophageous insect attack. Furanocoumarins are members of the phenylpropanoids family, and their biosynthetic pathway is initiated from p-coumaroyl coA. The enzymes belonging to the CYP98A cytochrome P450 family have been widely described as being aromatic meta-hydroxylases of various substrates, such as p-coumaroyl ester derivatives, and are involved in the synthesis of coumarins such as scopoletin. In furanocoumarin-producing plants, these enzymes catalyze the step directly downstream of the junction with the furanocoumarin biosynthetic pathway and might indirectly impact their synthesis. RESULTS: In this work, we describe the cloning and functional characterization of the first CYP98A encoding gene isolated from R. graveolens. Using Nicotiana benthamiana as a heterologous expression system, we have demonstrated that this enzyme adds a 3-OH to p-coumaroyl ester derivatives but is more efficient to convert p-coumaroyl quinate into chlorogenic acid than to metabolize p-coumaroyl shikimate. Plants exposed to UV-B stress showed an enhanced expression level of the corresponding gene. The R. graveolens cyp98a22 open reading frame and the orthologous Arabidopsis thaliana cyp98a3 open reading frame were overexpressed in stable transgenic Ruta plants. Both plant series were analyzed for their production of scopoletin and furanocoumarin. A detailed analysis indicates that both genes enhance the production of furanocoumarins but that CYP98A22, unlike CYP98A3, doesn't affect the synthesis of scopoletin. CONCLUSIONS: The overexpression of CYP98A22 positively impacts the concentration of furanocoumarins in R. graveolens. This gene is therefore a valuable tool to engineer plants with improved therapeutical values that might also be more resistant to phytophageous insects.  相似文献   

20.
Wild azuki bean, a progenitor of an Asiatic food legume (Vigna angularis var.nipponensis: Fabaceae), and its weed form are distributed widely in the Japanese Archipelago. The straggling or climbing wildform occurs in sleeve or mantle plant communities, and the weakly climbing or bushy weed form is found in relatively open human-disturbed habitats. The wild form has small seeds with a black-mottled pattern on green or grey skin; the weed form has larger seeds with variable color patterns. Wild and weed forms have black, easily dehiscent pods, distinct from their cultivated counterpart which has red large seeds and indehiscent light-colored pods. The wild form is not utilized, but the weed form is recognized by farmers and has several folk names as a weed, a contaminated form of azuki bean, and a substitute for azuki as a food. The frequent occurrence of weed azuki bean in Japan is attributable to adaptation of the wildform to lack of climbing support in human-disturbed habitats, escape from old cultivars, and natural establishment from the derivatives of hybrids between cultivars and wild forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号