首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new phytotoxin, stemphyloxin I, C21H32O5, was isolated from cultures of the pathogenic fungus Stemphylium botryosum f. sp. lycopersici. The toxin is a tricyclic compound possessing a most unusual β-ketoaldehyde group. Injection of stemphyloxin I into a tomato leaflet caused unlimited necrotic spots and a loss of turgor, which at higher toxin concentration wilted the whole compound leaf. Visible symptoms could be observed at a toxin concentration as low as 2.7 micromolar. Stemphyloxin I is a nonspecific toxin. It exhibits a differential toxicity towards various plants, tomato and eggplant being the most sensitive. Incorporation of [14C]amino acids into proteins of exponentially growing tomato cell suspension was completely suppressed in the presence of 1 micromolar toxin. The toxin showed no significant difference in its inhibitory activity against green and white tomato cell cultures. The methoxy derivative of stemphyloxin I, in which the β-ketoaldehyde group is exclusively modified, showed a reduction of approximately 50 times in its inhibitory activity as compared to the toxin. The diacetate derivative conferred the same activity as stemphyloxin I.  相似文献   

2.
Phialophora parasitica, Causal Agent of Cherry Dieback   总被引:1,自引:0,他引:1  
Structure-activity relationships of the phytotoxins stemphyloxin I and II from Stemphylium botryosum f. sp. lycopersici were investigated by quantitative comparison of their biological activity with chemically related phytotoxins from Phoma betae, betaenones A, B and C. Phytotoxicity was estimated by inhibition of incorporation of14C-leucine into proteins of exponentially growing tomato cells. The values of 50 % inhibition for stemphyloxin I and II and for betaenones A, B and C were 0.075, 16, 55, 350 and 1 μM respectively. The β-ketoaldehyde moiety appeared to be essential in, conferring biological activity and its toxicity was influenced by its spatial orientation. The presence of an hydroxyl group in stemphyloxin I and II enhanced activity in comparison with the respective compounds betaenones C and A which lack this group.  相似文献   

3.
《Phytochemistry》1987,26(5):1317-1320
Under iron-deficient conditions Stemphylium botryosum f. sp. lycopersici produces three major siderophores; dimerum acid, coprogen B and an unidentified monohydroxamate siderophore designated as A. The system of siderophores mediating uptake of iron was characterized. It exhibits active transport, saturation kinetics and an optimum at pH 6 and 30°. The rate of iron uptake via dimerum acid and coprogen B was four times higher than siderophore A. S. botryosum was capable of taking up iron from hydroxamate siderophores produced by other fungi, e.g. ferrichrome, fusigen, rhodotorulic acid but not ferrioxamine B. Double labelling experiments suggest that ferric coprogen B accumulates in mycelial cells as an intact chelate.  相似文献   

4.
The potato tuber lipoxygenase preparations convert α-linolenic acid not only to 9(S)-HPOTE, but also to some more polar metabolites. Two of these polar products, I and II, with ultraviolet absorbance maxima at 267 nm were purified by HPLC. It was found that metabolites I and II have, respectively, one and two hydroperoxy groups. Products of NaBH4 reduction of both I and II were identified by their chemical ionization and electron impact mass spectra and by 1H-NMR spectra as 9,16-dihydroxy-10(E), 12(Z), 14(E)-octadecatrienoic acid. The obtained results suggest that compound II is 9,16-dihydroperoxy-10(E), 12(Z), 14(E)-octadecatrienoic acid and product I is a mixture of two positional isomers, 9-hydroxy-16-hydroperoxy-10(E),12(Z),14(E)-octadecatrienoic and 9-hydroperoxy-16-hydroxy-10(E),12(Z), 14(E)-octadecatrienoic acids. Lipoxygenase converts efficiently [14C]9-HOTE into product I. Also, both metabolites I and II are the products of double dioxygenation. The second oxygenation at C-16 position as well as the first one at C-9 is controlled by lipoxygenase.  相似文献   

5.
A series of 1-(3-substituted-phenyl)-5-phenyl-N3,N4-bis(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-1H-pyrazole-3,4-dicarboxamides (4–15) were synthesized. The structures of these pyrazole-sulfonamides were confirmed by FT-IR, 1H NMR, 13C NMR and elemental analysis methods. Human cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes (hCA I and II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of newly synthesized derivatives (4–15) were investigated in vitro on esterase activities of these isozymes. The Ki values were determined as 0.119–3.999 μM for hCA I and 0.084–0.878 μM for hCA II. The results showed that the compound 6 for hCA I and the compound 11 for hCA II had the highest inhibitory effect. Beside that, the compound 8 had the lowest inhibition effect on both isozymes.  相似文献   

6.
4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure.  相似文献   

7.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   

8.
The chlorophyll fluorescence yield in isolated chloroplasts without an added electron acceptor is increased by actinic illumination. The decline in the fluorescence yield when the actinic illumination is extinguished can be accurately represented by three, independent, exponential decays with half-times of approximately 0.8, 5, and 30 sec. These results have been interpreted using Duysens' theory of fluorescence quenching by a compound (Q) on the reducing side of photosystem II. This theory states that changes in fluorescence yield are indicative of electron flow through Q. The most rapid decay is eliminated by an EDTA washing of the chloroplasts and the half-time is increased by uncoupling with ammonia and by added electron acceptors in suboptimal concentrations. Thus, this decay may represent electron flow from Q to intermediates on the oxidizing side of photosystem I. The decay with a half-time of 5 sec is affected in the same manner as the decay with the shortest half-time by the same procedures. However, electron donors to photosystem II lengthen the half-time of the 5 sec decay while eliminating the most rapid decay. This 5 sec decay can be interpreted as electron flow from Q to intermediates either on the reducing side of photosystem II or on the oxidizing side of photosystem I. The decay with the longest half-time is affected only by pH and electron donors to photosystem II. Therefore, this decay may indicate electron flow from Q to intermediates on the oxidizing side of photosystem II which may be connected to the regeneration of the oxygen burst.  相似文献   

9.
Helminthosporium maydis, race T, produces four host-specific toxins in culture. These have been designated toxins I, II, III, and IV. A method for isolation and purification of the four toxins is presented, and the criteria of purity of preparations of toxins I, II, and III are given. Toxins I and II are chemically similar and yield the same molecular ion when subjected to mass spectrometry, while toxin III appears to be a glycoside of a compound related to toxins I and II. Toxins I, II, and III can be biologically derived from 14C-mevalonic acid or 14C-acetate, permitting preparation of 14C-labeled toxins. Some chemical, spectral, and chromatographic properties of toxins I, II, and III are presented, and these data are discussed relative to the possible structure of the three compounds. In addition, four host-specific toxins have been isolated from corn infected with H. maydis (race T). These toxins are recovered in the same fractions as toxins I, II, III, and IV using the isolation procedure described here. Three of the toxins isolated from infected corn cannot be distinguished from toxins I, II, and III on the basis of infrared spectra or chromatographic mobility.  相似文献   

10.
1-Hydroxy-2-naphthoate (compound I) is a metabolite of the phenanthrene-degradative pathway in Nocardioides sp. strain KP7. This singly hydroxylated aromatic compound is cleaved by 1-hydroxy-2-naphthoate dioxygenase. In this study, the structure of the ring cleavage product generated by the action of homogeneous 1-hydroxy-2-naphthoate dioxygenase was determined upon separation by high-performance liquid chromatography at pH 2.5 by using nuclear magnetic resonance (NMR) and mass spectroscopic techniques. The ring cleavage product at this pH existed in equilibrium between two forms, 2-oxo-3-(3-oxo-1,3-dihydro-1-isobenzofuranyl)propanoate (compound III) and 2,2-dihydroxy-3-(3-oxo-1,3-dihydro-1-isobenzofuranyl)propanoate (compound IV). After the pH of the solution was raised to 7.5, the structure of the major species became (E)-4-(2-carboxylatophenyl)-2-oxo-3-butenoate (compound II; common name, trans-2′-carboxybenzalpyruvate), which was in equilibrium with compound III. Direct monitoring of the enzymatic formation of the ring cleavage product by 1H-NMR in a deuterated potassium phosphate buffer (pH 7.5) detected only compound II as a product, and the proton on carbon 3 of compound II was not exchanged with deuterium. Thus, compound II is likely to be the first stable product of dioxygenation of 1-hydroxy-2-naphthoate.  相似文献   

11.
Virtual screening and QSAR analysis were carried out to investigate the binding features of (2R, 3R, 4S)-2-aminomethylpyrrolidine 3,4-diol and the functionalized pyrrolidine derivatives to the α-mannosidase I and II enzymes. The QSAR models (possessed considerable R2, Q2 values, etc.) suggested that the presence of polar property on the vdW surface (vsurf_W, vsurf_Wp, etc.) of the molecules is important along with the presence of aromatic rings (opr_violation) in the molecules (which also provide hydrophobicity to the molecules). The docking study performed on α-mannosidase I and II enzymes pointed that the main interactions occur by hydrogen bonds, hydrophobic π–π stacking contacts and salt bridges with the cation calcium (for α-mannosidase I) and close interaction with zinc ion (α-mannosidase II), respectively. The bond flexibility orientates the aromatic ring in the molecules toward the hydrophobic cavity for π–π stacking contacts with the aromatic amino acids (Phe528, Phe329 and Phe659 for α-mannosidase I and Trp95, Tyr269, Phe312, Tyr102 for α-mannosidase II). The pharmacophore analysis also supports the results derived from the docking and QSAR studies. Our results suggest that the best compound to inhibit both classes of α-mannosidase is the compound 30, which may be used to design similar and better inhibitors to next generation drugs.  相似文献   

12.
Atrazine metabolism in resistant corn and sorghum   总被引:3,自引:1,他引:2       下载免费PDF全文
Shimabukuro RH 《Plant physiology》1968,43(12):1925-1930
The metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in the resistant species, corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.) was not the same. In corn, atrazine was metabolized via both the 2-hydroxylation and N-dealkylation pathways while sorghum metabolized atrazine via the N-dealkylation pathway. Atrazine metabolism in corn yielded the metabolites, 2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine (hydroxyatrazine), 2-hydroxy-4-amino-6-isopropylamino-s-triazine (hydroxycompound I), and 2-hydroxy-4-amino-6-ethylamino-s-triazine (hydroxycompound II). None of these hydroxylated derivatives appeared as metabolites of atrazine in sorghum.

Hydroxycompounds I and II were formed in 2 ways in corn: (1) by benzoxazinone-catalyzed hydrolysis of 2-chloro-4-amino-6-isopropylamino-s-triazine (compound I) and 2-chloro-4-amino-6-ethylamino-s-triazine (compound II) that were formed by N-dealkylation of atrazine and (2) by N-dealkylation of hydroxyatrazine, the major atrazine metabolite in corn. The interaction of the 2-hydroxylation and N-dealkylation pathways in corn results in the formation of the 3 hydroxylated non-phytotoxic derivatives of atrazine.

  相似文献   

13.
Fusarium solani M-13-1 was shake-cultured in a medium containing guaiacylglycerol-β-coniferyl ether (I), a model compound representing the arylglycerol-β-aryl ether linkage in lignin, as sole carbon source. From the culture filtrate guaiacylglycerol-β-coniferyl aldehyde ether (II) and guaiacylglycerol-β-ferulic acid ether (III) were isolated as metabolic products. Incubation with (III) resulted in formation of guaiacylglycerol-β-vanillin ether (IV), which was further metabolized to guaiacyglycerol-β-vanillic acid ether (V). The results indicate that the cinnamyl alcohol group of (I) is initially oxidized to an aldehyde group, which is further oxidized to a carboxyl group, yielding (II) and (III). Compound (III) is converted to (IV) by the release of a C2 fragment, and the aldehyde group of (IV) is further oxidized to a carboxyl group, giving (V). In the pathway from (I) to (V), neither oxidation of the benzylic secondary alcohol to ketone nor cleavage of the arylglycerol-β-aryl ether linkage was observed. The fungus was found to attack both erythro and threo form without distinction.  相似文献   

14.
Three mutants of Coprinus cinereus peroxidase (CIP) were made to mimic the substrate entrance histidine 82–glutamic acid 146 pair of the substrate channel in lignin peroxidase (LIP). Compound I formation of LIP has a low pH optimum around pH 3, while optimal formation of CIP compound I is obtained at pH 6–11. The mutants were glycine 154→glutamic acid (G154E), proline 90→histidine (P90H) and the double mutant P90H–G154E. All three showed kinetics of compound I formation similar to that of wt CIP between pH 3 and 9. However, the stability of compound I was strongly affected by these mutations. In wt CIP compound I is stable for approximately 30 min, while compound I of the mutants were stable for 5 s or less. The P90H and P90H–G154E mutants showed pKa values for the alkaline transition at least one pH unit lower than for wt CIP and the G154E mutant. We suggest that the changed electrostatic field results in destabilisation of the oxidised heme in compound I and II and that the P90H residue increases the electrostatic potential in the distal cavity thereby decreasing the pKa for the alkaline transition.  相似文献   

15.
《Phytomedicine》2014,21(11):1292-1297
The present study was carried out to assess the photosensitizing potential of embelin, the biologically active natural product isolated from Embelia ribes in photodynamic therapy (PDT) experiments in vivo. In vitro PDT clearly indicated that embelin recorded significant cytotoxicity in Ehrlich's Ascites Carcinoma (EAC) cells, which is superior to 5-aminolevulinic acid, a known photodynamic compound. For in vivo experiments solid tumor was induced using EAC cells in the male Swiss albino mice of groups I, II, III and IV. Group I served as the control (without solid tumor), group II served as tumor bearing mice without treatment and groups III and IV served as treatments. At the completion of 4 weeks of induction, the tumor bearing mice from group III and IV were given an intraperitoneal injection with embelin (12.5 mg/kg body weight). After 24 h, tumor area in the Group III and IV animals was exposed to visible light from a 1000 W halogen lamp. The mice from groups I to III were sacrificed 2 weeks after the PDT treatment and the marker enzymes (myeloperoxidase [MPO], β-d-glucuronidase, and rhodanese) were assayed and expression of Bcl-2 and Bax were analyzed in normal and tumor tissues. Animals from group IV were sacrificed after 90 days of PDT treatment and the above mentioned parameters were recorded. Reduction in tumor volume and reversal of biochemical markers to near normal levels were observed in the treated groups. This is the first report on PDT using a natural compound for solid tumor control in vivo. The uniqueness of the mode of treatment lies in the selective uptake of the nontoxic natural compound, embelin from the medicinal plant E. ribes used in Indian system of medicine, by the solid tumor cells and their selective destruction using PDT without affecting the neighboring normal cells, which is much advantageous over radiation therapy now frequently used.  相似文献   

16.
A novel series of 35 angularly fused pentacyclic 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridin-5-ium chlorides were designed and synthesized. Their cytotoxic activities were investigated against six human cancer cell lines (NCIH23, HCT15, NUGC-3, ACHN, PC-3, and MDA-MB-231). Among all screened compounds; 28, 30, 34, 35, 46, 48, 52, and 53 compounds exhibited potent cytotoxic activities against all tested human cancer cell lines. Further, these potent lead cytotoxic agents were evaluated against human Topoisomerase I and IIα inhibition. Among them, the compound 48 exhibited dual Topoisomerase I and IIα inhibition especially at 20?μM concentrations the compound 48 exhibited 1.25?times more potent Topoisomerase IIα inhibitory activity (38.3%) than the reference drug etoposide (30.6%). The compound 52 also exhibited excellent (88.4%) topoisomerase I inhibition than the reference drug camptothecin (66.7%) at 100?μM concentrations. Molecular docking studies of the compounds 48 and 52 with topo I discovered that they both intercalated into the DNA single-strand cleavage site where the compound 48 have van der Waals interactions with residues Arg364, Pro431, and Asn722 whilst the compound 52 have with Arg364, Thr718, and Asn722 residues. Both the compounds 48 and 52 have π–π stacking interactions with the stacked DNA bases. The docking studies of the compound 48 with topo IIα explored that it was bound to the topo IIα DNA cleavage site where etoposide was situated. The benzo[f]chromeno[4,3-b][1,7]naphthyridine ring of the compound 48 was stacked between the DNA bases of the cleavage site with π–π stacking interactions and there were no hydrogen bond interactions with topo IIα.  相似文献   

17.
Two sites in the photosynthetic electron transport chain of spinach chloroplasts are sensitive to inhibition by the plastoquinone antagonist dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone). This compound imposes maximal inhibition on reactions involving electron transport from water to a terminal acceptor such as ferricyanide at concentrations of about 1 μm. At concentrations of about 10 μm, dibromothymoquinone also inhibits electron transport reactions catalyzed by photosystem II in the presence of p-phenylenediimines or p-benzoquinones. This inhibition is observed in both untreated and KCNHg-inhibited chloroplast preparations. Thiol incubation of chloroplasts exposed to dibromothymoquinone relieves inhibition at both sites. This reversal of inhibition is, however, different for the two sites. Restoration of ferricyanide reduction, which is blocked by 1 μm dibromothymoquinone, required high thiol/inhibitor ratios and incubation times with thiol of up to 3 min. The reversal of inhibition of p-phenylenediimine reduction by photosystem II, on the other hand, requires a thiol/inhibitor ratio of 1, and incubation times as short as 5 s. Addition of bovine serum albumin to absorb dibromothymoquinone results in a partial restoration of photosystem II reactions, but ferricyanide reduction, which requires photosystem II and photosystem I, cannot be restored by this procedure.  相似文献   

18.
Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS–PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5–9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5–9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag+, Hg2+ (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The K m for Phy I and II for sodium phytate was 2.01 and 0.145 mM while V max was 5,018 and 1,671 μmol min?1 mg?1, respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger.  相似文献   

19.
Human Carbonic anhydrase (hCA) I and II are crucial targets for anti-acute mountain sickness. Twenty-one 4-(1,3,4-oxadiazol-2-yl) benzenesulfonamides were synthesized and screened against these two isoforms. The results illustrated that 5c, 5g, 5h, 5k were more potent against both hCA I and II than clinical drug AAZ. In particular, the value of compound 5c with hCA I (18.08 nM) was over 84-fold more than of AAZ with hCA I. The data of docking simulations were also in accord with the tendency of inhibitive activities. Furthermore, compound 6h, the methanesulfonate of 5h, showed better anti-hypoxia activity than AAZ in vivo, making it interesting lead compound.  相似文献   

20.
New mono Mannich bases, (2-(4-hydroxy-3-((4-substituephenylpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one), were prepared to evaluate their cytotoxic/anticancer properties and also their inhibitory effects on human carbonic anhydrase I and II isoenzymes (hCA I and II). Amine part was changed as [N-phenylpiperazine (1), N-benzylpiperazine (2), 1-(2-fluorophenyl)piperazine (3), 1-(4-fluorophenyl)piperazine (4), 1-(2-methoxyphenyl)piperazine (5)]. The structure of the synthesized compounds was characterized by 1H NMR, 13C NMR and HRMS spectra. Cytotoxicity results of the series pointed out that the compound 4 had the highest tumor selectivity value (TS: 59.4) possibly by inducing necrotic cell death in series. Additionally, all compounds synthesized showed a good inhibition profile towards hCA I and II isoenzymes with the Ki values between 29.6 and 58.4 nM and 38.1–69.7 nM, respectively. These values were lower than the reference compound AZA. However, it seems that the compounds 4 and 2 can be considered as lead compounds of CA studies with the lowest Ki values in series for further designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号