首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial horseradish peroxidase, when supplemented with dichlorophenol and either manganese or hydrogen peroxide, will rapidly oxidize glutathione. This peroxidase-catalyzed oxidation of glutathione is completely inhibited by the presence of auxin protectors. Three auxin protectors and three o-dihydroxyphenols were tested; all inhibited the oxidation. Glutathione oxidation by horseradish peroxidase in the presence of dichlorophenol and Mn is also completely inhibited by catalase, implying that the presence of Mn allows the horseradish peroxidase to reduce oxygen to H2O2, then to use the H2O2 as an electron acceptor in the oxidation of glutathione. Catalase, added 2 minutes after the glutathione oxidation had begun, completely inhibited further oxidation but did not restore any gluthathione oxidation intermediates. In contrast, the addition of auxin protectors, or o-dihydroxyphenols, not only inhibited further oxidation of gluthathione by horseradish peroxidase (+ dichlorophenol + Mn), but also caused a reappearance of glutathione as if these antioxidants reduced a glutathione oxidation intermediate. However, when gluthathione was oxidized by horseradish peroxidase in the presence of dichlorophenol and H2O2 (rather than Mn), then the inhibition of further oxidation by auxin protectors or o-dihydroxyphenols was preceded by a brief period of greatly accelerated oxidation. The data provide further evidence that auxin protectors are cellular redox regulators. It is proposed that the monophenol-diphenol-peroxidase system is intimately associated with the metabolic switches that determine whether a cell divides or differentiates.  相似文献   

2.
Ruptured pea (Pisum sativum cv. Massey Gem) chloroplasts exhibited ascorbate peroxidase activity as determined by H2O2-dependent oxidation of ascorbate and ascorbate-dependent reduction of H2O2. The ratio of ascorbate peroxidase to NADP-glyceraldehyde 3-phosphate dehydrogenase activity was constant during repeated washing of isolated chloroplasts. This indicates that the ascorbate peroxidase is a chloroplast enzyme. The pH optimum of ascorbate peroxidase activity was 8.2 and the Km value for ascorbate was 0.6 millimolar. Pyrogallol, glutathione, and NAD(P)H did not substitute for ascorbate in the enzyme catalyzed reaction. The enzyme was inhibited by NaN3, KCN, and 8-hydroxyquinoline but not ZnCl2 or iodoacetate. The ascorbate peroxidase activity of sonicated chloroplasts was inhibited by light but not in the presence of substrate concentrations of ascorbate.  相似文献   

3.
H2O2 production by coupled mitochondrial fractions from the protozoan, Crithidia fasciculata, has been measured spectrophotometrically by the formation of the stable enzyme-substrate complex with yeast cytochrome c peroxidase. H2O2 formation was observed with succinate, l-α-glycerophosphate, l-proline, α-ketoglutarate, and with endogenous substrate. The maximum rate of H2O2 generation obtained with each substrate in the presence of antimycin A was about 10% of the state 4 rate of O2 respiration, and only 1–2% of the carbonylcyanide m-fluorophenylhydrazone-uncoupled respiratory rate. Therefore, excess O2 uptake due to the formation of H2O2 cannot satisfactorily account for the low ADP:O ratios previously reported.Cytochrome c peroxidase activity was measured in mitochondrial preparations by recording the decrease in absorbance at 550 nm during the oxidation of horse heart ferrocytochrome c which was observed after addition of H2O2. The distribution of activity after sonic disruption of mitochondrial preparations was that expected for a soluble enzyme. The activity was proportional to the amount of enzyme protein added, and was abolished by heating at 100 °C for 3 min. Total cytochrome c peroxidase activity in mitochondrial fractions isolated from C. fasciculata was calculated to be 0.3% that of isolated yeast mitochondria, but it is suggested that the in vivo activity may be considerably higher than this estimate.  相似文献   

4.
Sequeira L  Mineo L 《Plant physiology》1966,41(7):1200-1208
Extracts from roots of Nicotiana tabacum L var. Bottom Special contain oxidative enzymes capable of rapid degradation of indoleacetic acid (IAA) in the presence of Mn2+ and 2, 4-dichlorophenol. Purification of IAA oxidase was attempted by means of ammonium sulfate fractionation and elution through a column of SE-Sephadex. Two distinct fractions, both causing rapid oxidation of IAA in the absence of H2O2, were obtained. One fraction exhibited high peroxidase activity when guaiacol was used as the electron donor; the other did not oxidase guaiacol. Both enzyme fractions caused similar changes in the UV spectrum of IAA; absorption at 280 mμ was reduced, while major absorption peaks appeared at 254 and 247 mμ. The kinetics of IAA oxidation by both fractions were followed by measuring the increase in absorption at 247 mμ. The peroxidase-containing fraction showed no lag or a slight lag which could be eliminated by addition of H2O2 (3 μmoles/ml). The peroxidase-free fraction showed a longer lag, but addition of similar amounts of H2O2 inhibited the rate of IAA oxidation and did not remove the lag. With purified preparations, IAA oxidation was stimulated only at low concentrations of H2O2 (0.03 μmole/ml). A comparison of Km values for IAA oxidation by the peroxidase-containing and peroxidase-free fractions suggests that tobacco roots contain an IAA oxidase which may have higher affinity for IAA and may be more specific than the general peroxidase system previously described from other plant sources. A similar oxidase is present in commercial preparations of horseradish peroxidase. It is suggested that oxidation of IAA by horseradish peroxidase may be due to a more specific component.  相似文献   

5.
6.
An enzyme preparation from suspension cultured tobacco cells oxidized IAA only in the presence of added cofactors, Mn2+ and 2,4-dichlorophenol, and showed two pH optima for the oxidation at pH 4·5 and 5·5. Effects of various phenolic compounds and metal ions on IAA oxidase activity were examined. The properties of seven peroxidase fractions separated by column chromatography on DEAE-cellulose and CM-Sephadex, were compared. The peroxidases were different in relative activity toward o-dianisidine and guaiacol. All the peroxidases catalysed IAA oxidation in the presence of added cofactors. The pH optima for guaiacol peroxidation were very similar among the seven isozymes, but the optima for IAA oxidation were different. The anionic and neutral fractions showed pH optima near pH 5·5, but the cationic isozymes showed optima near pH 4·5. With guaiacol as hydrogen donor, an anionic peroxidase (A-1) and a cationic peroxidase (C-4) were very different in H2O2 concentration requirements for their activity. Peroxidase A-1 was active at a wide range of H2O2 concentrations, while peroxidase C-4 showed a more restricted H2O2 requirement. Gel filtration and polyacrylamide gel studies indicated that the three cationic peroxidases have the same molecular weight.  相似文献   

7.
The manganese peroxidase (MnP) of Phanerochaete chrysosporium supported Mn(II)-dependent, H2O2-independent lipid peroxidation, as shown by two findings: linolenic acid was peroxidized to give products that reacted with thiobarbituric acid, and linoleic acid was peroxidized to give hexanal. MnP also supported the slow oxidation of phenanthrene to 2,2′-diphenic acid in a reaction that required Mn(II), oxygen, and unsaturated lipids. Phenanthrene oxidation to diphenic acid by intact cultures of P. chrysosporium occurred to the same extent that oxidation in vitro did and was stimulated by Mn. These results support a role for MnP-mediated lipid peroxidation in phenanthrene oxidation by P. chrysosporium.  相似文献   

8.
《Free radical research》2013,47(6):403-408
In the mid-fifth instar larvae of the cabbage looper moth, Trichoplusia ni, the subcellular distribution of total superoxide dismutase was as follows: 3.05 units (70.0%), 0.97 units (22.3%), and 0.33 units (7.6%) mg?1 protein in the mitochondrial, cytosolic and nuclear fractions, respectively. No superoxide dismutase activity was detected in the microsomal fraction. Catalase activity was unusually high and as follows: 283.4 units (47.3%), 150.1 units (25.1%). 142.3 units (23.8%), and 22.9 units (3.8%) mg?1 protein in the mitochondrial, cytosolic, microsomal (containing peroxisomes), and nuclear fractions. No glutathione peroxidase activity was found, but appreciable glutathione reductase activity was detected with broad subcellular distribution as follows: 3.86 units (36.1%), 3.68 units (34.0%). 2.46 units (23.0%). and 0.70 units (6.5%) mg?1 protein in the nuclear, mitochondrial, and cytosolic fractions, respectively. The unusually wide intracellular distribution of catalase in this phytophagous insect is apparently an evolutionary adaptation to the absence of glutathione peroxidase; hence, lack of a glutathione peroxidase-glutathione reductase role in alleviating stress from lipid peroxidation. Catalase working sequentially to superoxide dismutase, may nearly completely prevent the formation of the lipid peroxidizing OH radical from all intracellular compartments by the destruction of H2O2 which together with O?2 is a precursor of OH.  相似文献   

9.
The genome sequence of Schizosaccharomyces pombe reveals only one gene for a putative glutathione peroxidase (gpx1+). The Gpx1 protein has a peroxidase activity but preferred thioredoxin to glutathione as an electron donor when examined in vitro and in vivo, and therefore is a thioredoxin peroxidase. Besides H2O2, it can reduce alkyl and phospholipid hydroperoxides. Expression of the gpx1 gene was elevated at the stationary phase, and we found that it supported long-term survival of S. pombe. The mutant also exhibited some defect in the activity of aconitase, an oxidation-labile Fe-S enzyme in mitochondria. Activity of sulfite reductase, a labile Fe-S enzyme in the cytosol, was also dramatically lowered in the mutant in the stationary phase. The Gpx1 protein, without any obvious targeting sequence, was localized in mitochondria as well as in the cytosol. Therefore, Gpx1 must serve to ensure optimal mitochondrial function and cytosolic environment, especially in the stationary phase.  相似文献   

10.
Previously, a selenium-containing protein with subunit molecular weight of 15 kDa was found in peripheral human granulocytes. In continuation of this work, the present communication accounts for purification, identification, and characterization of this major selenium-containing protein. The protein was purified on a heparin-Sepharose column followed by Sephacryl S-200 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDSPAGE) analysis visualized two bands with subunit molecular weights around 15 kDa.o-Phthaldialdehyde precolumn derivatization and reverse-phase high-performance liquid chromatography showed that the protein contains selenocysteine or selenocystine residues. Highperformance gel filtration and isoelectric focusing revealed that the protein had an apparent molecular weight of 32 kDa and apI value of 7.9. The addition of the protein synthesis inhibitor puromycin to the cell culture medium decreased the 15-kDa protein synthesis. These data suggest that the major selenium-containing protein in peripheral human granulocytes might be a protein with two subunits around 15 kDa. Enzyme studies showed that the protein had peroxidase activity assayed with H2O2 as a substrate and O-dianisidine as a hydrogen donor. This enzymatic activity competed with glutathione peroxidase on the consumption of H2O2, leading to an “inhibiton” of glutathione peroxidase (GSH-Px) activity. Sodium azide could eliminate the inhibition of the protein to GSH-Px. All of the above results implicated that the protein might be a H2O2-dependent seleniumcontaining peroxidase different from GSH-Px. Therefore, the biological function of the protein could be related to eliminating H2O2 generated in the respiratory burst reaction of granulocytes, thus protecting these cells from oxida-tive damage during phagocytosis.  相似文献   

11.
ABSTRACT. The free-living anaerobic flagellate Hexamita sp. was observed to actively consume O2 with a Km O2 of 13 μM. Oxygen consumption increased lineraly with O2 tension up to a threshold level of 100 μM, above which it was inhibited. Oxygen uptake was supported by a number of substrates but probably not coupled to energy conservation as cytochromes could not be detected spectro-photometrically. In addition, inhibitors specific for respiratory chain components did not significantly affect O2 uptake. Respiration was however, partially inhibited by flavoprotein and iron-sulfur protein inhibitors. NAD(P)H supported O2 consumption was measured in both particulate and soluble fractions; this activity was partially inhibited by quinacrine. A chemosensory response was observed in cells exposed to air, however no response was observed in the presence of superoxide dismutase plus catalase. Catalase and nonspecific peroxidase activity could not be detected, but superoxide dismutase activity was present. Superoxide dismutase was sensitive to NaN3 and H2O2 but not KCN, suggesting a Fe prosthetic group. Flow cytometric analysis revealed that thiol levels in live cells were depleted in the presence of t-butyl H2O2. The observed NADPH-driven glutathione reductase activity is believed to recycle oxidized thiols in order to re-establish reduced thiol levels in the cell. The corresponding thiol cycling enzyme glutathione peroxidase could not be detected. The ability to withstand high O2 tensions (100 μM) would enable Hexamita to spend short periods in a wider range of habitats. Prologed exposure to O2 tensions higher than 100 μM leads to irreversible damage and cell death.  相似文献   

12.
Two unicellular marine algae cultured in media containing sodium selenite were examined for glutathione peroxidase activity. The 400 g supernatant from disrupted cells of both the green alga Dunaliella primolecta and the red alga Porphyridium cruentum were able to enhance both the H2O2 and the tert-butyl hydroperoxide dependent oxidation of glutathione. The glutathione peroxidation activity of D. primolecta was reduced only slightly by heating the 400 g supernatant, a 30% decrease in the rate with H2O2 and 10% decrease in the rate with t-BuOOH being observed. Heating caused the H2O2 dependent activity in P. cruentum to be reduced by only 30%, but the activity with t-BuOOH was reduced by 90%. Freezing decreased the t-BuOOH dependent activity of P. cruentum by 90%, but did not lower the t-BuOOH dependent activity of D. primolecta or the H2O2 dependent activity of either alga. It was concluded that the heat and cold stable, glutathione peroxidation was non-enzymatic in nature. A variety of small molecules (ascorbate, Cu(NO3)2, selenocystine, dimethyldiselenide and selenomethionine) were shown to be able to enhance the hydroperoxide dependent oxidation of glutathione in the assay system employed in this study. Such compounds could be responsible for the activity observed in algae. The heat and cold labile t-BuOOH reductase activity of P. cruentumwas possibly enzymatic, but was not attributable to the presence of glutathione-S-transferase. Both algae, when cultured in the presence of added selenite, displayed an approximate doubling of the non-enzymatic H2O2 and t-BuOOH dependent glutathione oxidase activities. The heat and cold labile t-BuOOH reductase activity of P. cruentum was unaltered when the alga was grown in the presence of added selenite. These observations are consistent with the hypothesis that selenium compounds present in the algae are responsible for the selenium induced glutathione peroxidation.  相似文献   

13.
Hydrogen peroxide (H2O2) scavenging systems of spruce (Picea abies) needles were investigated in both extracts obtained from the extracellular space and extracts of total needles. As assessed by the lack of activity of symplastic marker enzymes, the extracellular washing fluid was free from intracellular contaminations. In the extracellular washing fluid ascorbate, glutathione, cysteine, and high specific activities of guaiacol peroxidases were observed. Guaiacol peroxidases in the extracellular washing fluid and needle homogenates had the same catalytic properties, i.e. temperature optimum at 50°C, pH optimum in the range of pH 5 to 6 and low affinity for guaiacol (apparent Km = 40 millimolar) and H2O2 (apparent Km = 1-3 millimolar). Needle homogenates contained ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, and catalase, but not glutathione peroxidase activity. None of these activities was detected in the extracellular washing fluid. Ascorbate and glutathione related enzymes were freeze sensitive; ascorbate peroxidase was labile in the absence of ascorbate. The significance of extracellular antioxidants for the detoxification of injurious oxygen species is discussed.  相似文献   

14.
Oxidative folding in the endoplasmic reticulum (ER) involves ER oxidoreductin 1 (Ero1)-mediated disulfide formation in protein disulfide isomerase (PDI). In this process, Ero1 consumes oxygen (O2) and releases hydrogen peroxide (H2O2), but none of the published Ero1 crystal structures reveal any potential pathway for entry and exit of these reactants. We report that additional mutation of the Cys208–Cys241 disulfide in hyperactive Ero1α (Ero1α-C104A/C131A) potentiates H2O2 production, ER oxidation, and cell toxicity. This disulfide clamps two helices that seal the flavin cofactor where O2 is reduced to H2O2. Through its carboxyterminal active site, PDI unlocks this seal by forming a Cys208/Cys241-dependent mixed-disulfide complex with Ero1α. The H2O2-detoxifying glutathione peroxidase 8 also binds to the Cys208/Cys241 loop region. Supported by O2 diffusion simulations, these data describe the first enzymatically controlled O2 access into a flavoprotein active site, provide molecular-level understanding of Ero1α regulation and H2O2 production/detoxification, and establish the deleterious consequences of constitutive Ero1 activity.  相似文献   

15.
Addition of NADH inhibited the peroxidative loss of scopoletin in presence of horseradish and H2O2 and decreased the ratio of scopoletin (consumed):H2O2 (added). Concomitantly NADH was oxidized and oxygen was consumed with a stoichiometry of NADH:O2 of 2:1. On step-wise addition of a small concentration of H2O2 a high rate of NADH oxidation was obtained for a progressively decreasing time period followed by termination of the reaction with NADH:H2O2 ratio decreasing from about 40 to 10. The rate of NADH oxidation increased linearly with increase in scopoletin concentration. Other phenolic compounds including p-coumarate also supported this reaction to a variable degree. A 418-nm absorbing compound accumulated during oxidation of NADH. The effectiveness of a small concentration of H2O2 in supporting NADH oxidation increased in presence of SOD and decreased in presence of cytochrome c, but the reaction terminated even in their presence. The results indicate that the peroxidase is not continuously generating H2O2 during scopoletin-mediated NADH oxidation and that both peroxidase and oxidase reactions occur simultaneously competing for an active form of the enzyme.  相似文献   

16.
Mouse and human spermatozoa, but not rabbit spermatozoa, have long been known to be sensitive to loss of motility induced by exogenous H2O2. Recent work has shown that loss of sperm motility in these species correlates with the extent of spontaneous lipid peroxidation. In this study, the effect of H2O2 on this reaction in sperm of the three species was investi gated. The rate of spontaneous lipid peroxidation in mouse and human sperm is markedly enhanced in the presence of 1-5 mM H2O2, while the rate in rabbit sperm is unaffected by H2O2. The enhancement of lipid peroxidation, the rate of reaction of H2O2 with the cells, the activity of sperm glutathione peroxidase, and the endogenous glutathione content are highest in mouse sperm, intermediate in human sperm, and very low in rabbit sperm. Inac tivation of glutathione peroxidase occurs in the presence of H2O2 due to complete conver sion of endogenous glutathione to GSSG: No GSH is available as electron donor substrate to the peroxidase. Inactivation of glutathione peroxidase by the inhibitor mercaptosucci nate has the same effect on rate of lipid peroxidation and loss of motility in mouse and human sperm as does H2O2. This implies that H2O2 by itself at 1-5 mM is not intrinsically toxic to the cells. With merceptosuccinate, the endogenous glutathione is present as GSH in mouse and human sperm, indicating that the redox state of intracellular glutathione by itself plays little role in protecting the cell against spontaneous lipid peroxidation. Mouse and human sperm also have high rates of superoxide production. We conclude that the key intermediate in spontaneous lipid peroxidation is lipid hydroperoxide generated by a chain reaction initiated by and utilizing superoxide. Removal of this hydroperoxide by gluta thione peroxidase protects these sperm against peroxidation; inactivation of the peroxidase allows lipid hydroperoxide to increase and so increases the peroxidation rate. Rabbit sperm have low rates of superoxide reaction due to high activity of their superoxide dismutase; lack of endogenous glutathione and low peroxidase activity does not affect their rate or lipid peroxidation. As a result, these sperm are not affected by either H2O2 or mercapto-succinate. These results lead us to postulate a mechanism for spontaneous lipid peroxida tion in mammalian sperm which involves reaction of lipid hydroperoxide and O2 as the rate-determining step.  相似文献   

17.
The cellular production of hydrogen peroxide   总被引:52,自引:13,他引:39       下载免费PDF全文
1. The enzyme–substrate complex of yeast cytochrome c peroxidase is used as a sensitive, specific and accurate spectrophotometric H2O2 indicator. 2. The cytochrome c peroxidase assay is suitable for use with subcellular fractions from tissue homogenates as well as with pure enzyme systems to measure H2O2 generation. 3. Mitochondrial substrates entering the respiratory chain on the substrate side of the antimycin A-sensitive site support the mitochondrial generation of H2O2. Succinate, the most effective substrate, yields H2O2 at a rate of 0.5nmol/min per mg of protein in state 4. H2O2 generation is decreased in the state 4→state 3 transition. 4. In the combined mitochondrial–peroxisomal fraction of rat liver the changes in the mitochondrial generation of H2O2 modulated by substrate, ADP and antimycin A are followed by parallel changes in the saturation of the intraperoxisomal catalase intermediate. 5. Peroxisomes supplemented with uric acid generate extraperoxisomal H2O2 at a rate (8.6–16.4nmol/min per mg of protein) that corresponds to 42–61% of the rate of uric acid oxidation. Addition of azide increases these H2O2 rates by a factor of 1.4–1.7. 6. The concentration of cytosolic uric acid is shown to vary during the isolation of the cellular fractions. 7. Microsomal fractions produce H2O2 (up to 1.7nmol/min per mg of protein) at a ratio of 0.71–0.86mol of H2O2/mol of NADP+ during the oxidation of NADPH. H2O2 is also generated (6–25%) during the microsomal oxidation of NADH (0.06–0.025mol of H2O2/mol of NAD+). 8. Estimation of the rates of production of H2O2 under physiological conditions can be made on the basis of the rates with the isolated fractions. The tentative value of 90nmol of H2O2/min per g of liver at 22°C serves as a crude approximation to evaluate the biochemical impact of H2O2 on cellular metabolism.  相似文献   

18.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H2O2) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H2O2 inhibited dioxygenase activity in a manner abrogated by l-Trp. Dioxygenase inhibition correlated with IDO-catalyzed H2O2 consumption, compound I-mediated formation of protein-centered radicals, altered protein secondary structure, and opening of the distal heme pocket to promote nonproductive substrate binding; these changes were inhibited by l-Trp, the heme ligand cyanide, or free radical scavengers. Protection by l-Trp coincided with its oxidation into oxindolylalanine and kynurenine and the formation of a compound II-type ferryl-oxo heme. Physiological peroxidase substrates, ascorbate or tyrosine, enhanced rIDO-mediated H2O2 consumption and attenuated H2O2-induced protein oxidation and dioxygenase inhibition. In the presence of H2O2, rIDO catalytically consumed nitric oxide (NO) and utilized nitrite to promote 3-nitrotyrosine formation on IDO. The promotion of H2O2 consumption by peroxidase substrates, NO consumption, and IDO nitration was inhibited by l-Trp. This study identifies IDO as a heme peroxidase that, in the absence of substrates, self-inactivates dioxygenase activity via compound I-initiated protein oxidation. l-Trp protects against dioxygenase inactivation by reacting with compound I and retarding compound II reduction to suppress peroxidase turnover. Peroxidase-mediated dioxygenase inactivation, NO consumption, or protein nitration may modulate the biological actions of IDO expressed in inflammatory tissues where the levels of H2O2 and NO are elevated and l-Trp is low.  相似文献   

19.
Zinnia elegans stems with 3,3′, 5, 5′-tetramethylbenzidine (TMB) in the presence and in the absence of catalase reveals the presence of xylem oxidase activities in the H2O2-producing lignifying xylem cells. This staining of lignifying xylem cells with TMB is the result of two independent mechanisms: one is the catalase-sensitive (H2O2-dependent) peroxidase-mediated oxidation of TMB, and the other the catalase-insensitive (H2O2-independent) oxidation of TMB, probably due to the oxidase activity of xylem peroxidases. The response of this TMB-oxidase activity of xylem peroxidases to different exogenous H2O2 concentrations was studied, and the results showed that H2O2 at high concentrations (100–1,000 mM) clearly acted as an inactivator of this xylem TMB-oxidase activity, although some inhibitory effect could still be appreciated at 10 mM H2O2. This xylem TMB-oxidase activity resided in a strongly basic cell wall-bound peroxidase (pl about 10.5). Given such a scenario, it may be concluded that this TMB-oxidase activity of peroxidase is located in tissues capable of sustaining H2O2 production, and that the in situ oxidase activity shown by this enzyme is inactivated by high H2O2 concentrations. Received 20 April 1999/ Accepted in revised form 16 August 1999  相似文献   

20.
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号