首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of androgens on the FSH modulation of progestin biosynthetic enzymes was studied in vitro. Granulosa cells obtained from immature, hypophysectomized, estrogen-treated rats were cultured for 3 days in a serum-free medium containing FSH (20 ng/ml) with or without increasing concentrations (10?9?10?6 M) of 17β-hydroxy-5α-androstan-3-one (dihydrotestosterone; DHT), 5α-androstane-3α, 17β-diol (3α-diol), or the synthetic androgen 17β-hydroxy-17-methyl-4,9,11-estratrien-3-one (methyltrienolone; R1881). FSH treatment increased progesterone and 20α-hydroxy-4-pregnen-3-one(20α-OH-P) production by 10.2- and 11-fold, respectively. Concurrent androgen treatment augmented FSH-stimulated progesterone and 20α-OH-P production in a dose-related manner (R1881 > 3α-diol > DHT). In the presence of an inhibitor of 3β-hydroxysteroid dehydrogenase (3β-HSD), the FSH-stimulated pregnenolone (3β-hydroxy-5-pregnen-20-one) production (a 20-fold increase) was further enhanced by co-treatment with R1881, 3α-diol or DHT. Furthermore, FSH treatment increased 4.4-fold the activity of 3β-HSD, which converts pregnenolone to progesterone. This stimulatory action of FSH was further augmented by concurrent androgen treatment. In contrast, androgen treatment did not affect FSH-stimulated activity of a progesterone breakdown enzyme, 20α-hydroxysteroid dehydrogenase(20α-HSD). These results demonstrate that the augmenting effect of androgens upon FSH-stimulated progesterone biosynthesis is not due to changes in the conversion of progesterone to 20α-OH-P, but involves an enhancing action upon 3β-HSDΔ5, Δ4-isomerase complexes and additional enzymes prior to pregnenolone biosynthesis.  相似文献   

2.
To evaluate the mechanisms involved in the reduction of estrogen concentrations in porcine follicular fluid during atresia, nonatretic and atretic follicles ranging from 4 to 7 mm in diameter were selected. Follicular fluid estrogen concentrations were 7-16-fold less in the atretic follicles. Isolated granulosa cells from atretic follicles demonstrated a significant reduction in aromatase activity and in follicle-stimulating hormone (FSH)-induced progesterone production in vitro compared to granulosa cells from nonatretic follicles. Isolated theca from atretic follicles also demonstrated a reduction in estrogen production. However, androgen concentrations were equivalent in the follicular fluid of atretic and nonatretic follicles, and theca from atretic follicles maintained testosterone and androstenedione production in vitro. The loss of thecal aromatase activity with atresia is not secondary to a reduction in FSH responsiveness, since FSH did not increase thecal progesterone production in vitro. Cell degeneration also does not account for the reduction in thecal estrogen production, since both androgen output in vitro and follicular fluid androgen concentrations were maintained. These data thus demonstrate that a mechanism other than reduced FSH responsiveness must account for the selective loss of thecal aromatase activity in this stage of atresia.  相似文献   

3.
A J Duleba  H Takahashi  Y S Moon 《Steroids》1983,42(3):321-330
Effects of androgens on progesterone accumulation, utilization of exogenous progesterone and accumulation of [4-14C]progesterone metabolites by rat granulosa cells in culture were studied. Androgen increased progesterone accumulation in cultures without exogenous progesterone and slowed the overall decline of progesterone concentration in cultures supplemented with exogenous progesterone. Both aromatizable testosterone and nonaromatizable 5 alpha-dihydrotestosterone decreased [4-14C]progesterone utilization by granulosa cells by 12 to 30%. This effect was observed irrespective of whether the cells were continuously exposed to androgens or only pre-exposed. In he same experiments, androgens decreased conversion of radiolabeled progesterone to 20 alpha-hydroxy-4-pregnen-3-one by 11 to 50% and to 5 alpha-pregnane-3 alpha, 20 alpha-diol by 26 to 49%. Accumulation of 3 alpha-hydroxy-5 alpha-pregnan-20-one was not altered in 3 h incubations and was increased by up to 43% in 24 h incubations by androgen treatment. It is suggested that androgens alter progesterone catabolism by granulosa cells by decreasing 20 alpha-hydroxysteroid dehydrogenase activity and that this effect may contribute to overall stimulatory action of androgens on progesterone accumulation.  相似文献   

4.
Testosterone formation from pregnenolone (3β-hydroxy-5-pregnen-20-one) and progesterone in testis of the Stanley-Gumbreck pseudohermaphrodite (Ps) adult rat is greatly reduced in comparison to the normal (Nl) adult rat testis. In an attempt to determine whether this defect is congenital or acquired postnatally with increasing age, minced testis of 1-month-old Ps and Nl rats were incubated with progesterone, and the labeled metabolites identified. Almost equal amounts of progesterone were metabolized by both Ps and Nl testis. In mince incubations without NADPH nearly as much testosterone and 4-androstene-3,17-dione accumulated in the Ps as in the Nl testis. Very little androsterone and 5α-androstane-3α,17β-diol were formed in these incubations. When minces were incubated with progesterone in the presence of NADPH, testosterone and 4-androstene-3,17-dione accumulation was greatly reduced, and instead 5α-androstane-3α,17β-diol was formed as the major product by Nl testis and androsterone by Ps testis. Neither heparin, a 5α-reductase inhibitor, nor glucose-6-phosphate dehydrogenase alone significantly influenced progesterone metabolism or the accumulation of testosterone or 4-androstene-3,17-dione in either Ps or Nl testis. These results indicated that the 5α-reductase activity in both the Ps and N1 testis is dependent only on NADPH. Although studies were not carried out in younger rats (2–5 days of age), our results are in agreement with previous studies of Goldstein and Wilson who demonstrated equal accumulation of testosterone in incubations of testis from normal and Tfm/y mice. However, it is apparent that differences between Nl and Ps testis may be revealed only under conditions which allow maximum rates of 17-oxo- and 5α-reductions.  相似文献   

5.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

6.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

7.
The major source of ovarian androgen is the theca cells. Androgens are produced by the conversion of progestins by the 17 alpha-hydroxylase/C17,20 lyase enzymatic system (lyase). The 3 beta-hydroxysteroid dehydrogenase and aromatase enzymes in the theca cells are modulated by gonadotropins as well as by steroids produced locally. Therefore, the combined effects of hCG plus progesterone, estradiol, or dihydrotestosterone (DHT) on microsomal lyase activity in theca cells from large and medium-sized follicles were determined. Theca cells (3 x 10(6) cells/6 ml/well) were cultured in Medium 199 (M199) containing only insulin (10 micrograms/ml) and transferrin (5 micrograms/ml). At 24 h, theca cells were treated with M199, hCG (15 ng/ml), progesterone, estradiol, or DHT (100 ng/ml) or a combination of hCG + one of the three steroids. Media were removed at various times of culture (27-72 h) and levels of androgen determined by RIA. Microsomes were incubated with 1 microCi [3H]progesterone +0.5 mM NADPH and radioactive conversion products were measured after purification by thin layer chromatography. Administration of progesterone, estradiol, or DHT alone had little effect on lyase activity in theca cells from medium-sized follicles whereas the addition of hCG alone significantly increased lyase activity in these cells. However, concomitant addition of any steroid with hCG inhibited the increase in lyase activity after the addition of hCG alone. Theca cells from large porcine follicles had a higher basal level of lyase activity compared to theca cells from the smaller follicles. Lyase activity in theca cells from large follicles was enhanced by progesterone; estradiol was inhibitory. DHT initially stimulated lyase activity in theca cells from large follicles, but was inhibitory later in culture. In contrast to its marked effect on theca cells from medium follicles, hCG had only a small effect on lyase activity in theca cells from large follicles. Thus, thecal lyase activity increased as the follicle matured, providing more androgen substrate for the production of estrogen. Lyase activity in theca cells of medium follicles appears to be regulated predominantly by gonadotropin from the pituitary while intraovarian regulation of lyase activity by steroids may be more important in larger follicles.  相似文献   

8.
Muscle and adipose tissue were obtained from steers and dairy cows following subcutaneous administration of [14C] progesterone. Following extraction, purification and separation by column, thin layer and gas-liquid chromatography, various radioactive residues from these tissues were identified by their Chromatographic mobility, crystallization to constant specific activity and mass spectra. Progesterone constituted 54% of free radioactivity extracted from muscle and 69 and 73% of radioactivity in the free and conjugated portions of extracts, respectively, from fat. Metabolites identified were: 5α-pregnane-3,20-dione, 9%, 0%, 0%, 20β-hydroxy-4-pregnen-3-one, 8%, 11%, 3%; 3α-hydroxy-5β-pregnan-20-one, 13%, 2%, 2%; 3α-hydroxy-5α-pregnan-20-one, 3%, 3%, 6%; 20α-hydroxy-5α-pregnan-3-one, 0%, 2%, 3%; of radioactivity in muscle (free) and fat (free and conjugated fractions), respectively. Tentatively identified in fat extracts by chromatographic mobility were: 20α-hydroxy-4-pregnen-3-one, 1%, 1% and 3β-hydroxy-5β-pregnan-20-one, 0%, 2% of radioactivity in free and conjugated fractions, respectively. The average concentration of steroid in these animals due solely to treatment, calculated from the specific activity of the [14C] progesterone administered, was 3.4 and 18.1 ng/g in muscle and subcutaneous fat, respectively.  相似文献   

9.
The conversion of progesterone to 20α-hydroxy-4-pregnen-3-one by 20α-hydroxysteroid dehydrogenase was measured in mouse vaginal tissue. The enzyme was confined to the 105,000 × g supernatant of tissue homogenates and the requirement for reduced NADP demonstrated. The Initial rates of 20α-hydroxysteroid dehydrogenase were determined in the cytosol of tissues from four-day estrogen-treated and untreated animals. The rate of 20α-hydroxy-4-pregnen-3-one formation per vagina was increased 15-fold by estrogen stimulation. This increase could not be accounted for on the basis of increased organ weight or increased availability of cofactor. These findings indicate that 20α-hydroxy steroid dehydrogenase induction in the mouse vaginae is under estrogen control.  相似文献   

10.
Apolipoprotein E (apo E) is a 35-kDa protein found in association with various lipoproteins. It is synthesized by a wide variety of tissues, including the ovary. It can serve several functions, such as 1) transport of excess cholesterol from peripheral tissue to the liver; 2) directed movement of cholesterol from areas of high to low cholesterol concentration within tissue or organs; and 3) inhibition of the conversion of theca progesterone to androgen, thus acting as an autocrine or paracrine factor within the ovary. To better understand the physiological role of ovarian apo E, we employed the technique of in situ hybridization utilizing 35S-labeled apo E riboprobes to identify cells containing E mRNA. We studied ovaries of hypophysectomized immature rats administered various regimens of gonadotropins because of the uniform, predictable stimulation of follicular granulosa and theca development, ovulation, and corpus luteum formation. Apo E mRNA was localized predominantly in the theca, with an increase associated with theca hypertrophy. Apo E mRNA increased in granulosa cells with the development of preovulatory Graafian follicles, but decreased to baseline following ovulation and corpus luteum formation. These data are consistent with two roles for apo E in the ovary: 1) directing cholesterol to cells needing cholesterol as substrate for cell proliferation and steroidogenesis, and 2) acting as an autocrine regulatory factor to reduce theca androgen substrate for follicle estrogen production.  相似文献   

11.
Castrated male Japanese quail were injected for 15 days with 1 mg/day of testosterone propionate (TP), testosterone (T), androstenedione (AE), androsterone (AO), 5α-dihydrotestosterone benzoate (5α-DHTB), or 5β-dihydrotestosterone (5β-DHT), or with oil. Copulation was activated to a significant extent only by TP and T. Strutting was activated only by TP, T, and AE. Proctodeal (foam) glands were well-developed in birds injected with TP, T, AE, or 5α-DHTB. Additional data were obtained following implantation of pellets of crystalline T, AE, AO, or 5α-DHT. T pellets activated copulation, but AO and 5α-DHT pellets did not. Effects of AE require further study. These results suggest that conversion of androgen to estrogen is necessary for the activation of copulation in the male quail.  相似文献   

12.
《Steroids》1998,63(11):579-586
The melanotrophs of the neurointermediate lobe and peptidergic terminals of the neural lobe are regulated by gamma-aminobutyric acid (GABA) via GABA-A receptors and therefore, may be important sites for the modulatory actions of neurally active steroids. These steroid compounds might be produced peripherally, synthesized de novo in the pituitary, or derivatized from circulating steroids, each pathway having different physiological implications. In the present study, we show that neurointermediate lobe tissue can derivatize progesterone to the neurally active steroid 3α-hydroxy-5α-pregnan-20-one. The neurointermediate lobe was found to be four times as active as anterior pituitary and mediobasal hypothalamus in conversion of progesterone to 3α-hydroxy-5α-pregnan-20-one; mediobasal hypothalamus was relatively more active in the production of the intermediate 5α-pregnan-3,20-dione. The identity of the compounds was confirmed by the method of serial isotopic dilution. We observed rates of synthesis in the neurointermediate lobe consistent with the production of physiologically relevant quantities of 3α-hydroxy-5α-pregnan-20-one from concentrations of progesterone which can occur naturally. In support of these findings, we demonstrate the presence of 3α-hydroxysteroid oxidoreductase in neurointermediate lobe by immunocytochemistry.  相似文献   

13.
Growth differentiation factor-9 (GDF-9) was shown recently to be essential for early follicular development, including the appearance of the theca layer. Theca cells provide the androgen substrate for aromatization and estrogen production by granulosa cells. Using biologically active recombinant GDF-9 (rGDF-9) and an androgen-producing immortalized theca-interstitial cell (TIC) line or primary TIC, we have examined the action of this paracrine hormone on theca cell steroidogenesis. The effect of GDF-9 on TIC progesterone synthesis was marginal and inconsistent in the primary cultures. In immortalized theca cells, GDF-9 attenuated the forskolin-stimulated progesterone accumulation. More significantly, this oocyte-derived growth factor enhanced both basal and stimulated androstenedione accumulation in the primary and transformed TIC cultures. The effects of GDF-9 on steroidogenesis by preovulatory follicles were relatively modest. Likewise, it did not affect the maturation of follicle-enclosed oocytes. The effect of GDF-9, an oocyte product, on TIC androgen production suggests a regulatory role of the oocyte on theca cell function and hence on follicle development and differentiation. This direct effect of GDF-9 on thecal steroidogenesis is consistent with its recently demonstrated actions on thecal cell recruitment and differentiation.  相似文献   

14.
The pattern of androgenic metabolites in blood, muscle, caput and cauda epididymidis has been investigated in functionally hepatectomized 24 hours castrated rats, 3 hours after the intra-muscular injection of 200 μCi of 3H -3α-diol. Identification of the radioactive metabolites showed only negligible differences between the epididymal regions. In both caput and cauda the main metabolite was DHT (17β-hydroxy-5α-androstane-3-one); 3α- and 3β-diol, androsterone (3α-hydroxy-5α-androstane-17-one), 5-A-dione (5α-androstane-3,17-dione), Δ16-3α-ol (5α-androst-l6-en-3α-ol), Δ16-3β-ol (5α-androst-l6-en-3α-ol) and Δ16-3-one (5α-androst-l6-en-3-one) were also present.Androsterone and 3α-diol were the predominant metabolites in blood and muscle. No Δ16 compounds could be detected and in constrast to epididymis, more than 50% of the radioactivity was associated with polar compounds. From determination of total radioactivity, it was seen that retention by epididymis varied from two to four times that of muscle. Purification and identification of the radioactivity associated with the nuclear fraction demonstrated that DHT was the only nuclear bound androgen.It is suggested from these results that at least one effect of 3α-diol on the rat epididymis is exerted through its conversion to DHT.  相似文献   

15.
Limits to estrogen production by early and late preovulatory porcine follicles were assessed by comparing enzymatic capacities for androgen (17,20-lyase) and estrogen (aromatase) synthesis in theca interna and granulosa, support of enzyme activities by the redox partner proteins NADPH-cytochrome P450 oxidoreductase (reductase) and cytochrome b5, and tissue-specific expression and regulation of these proteins. Parameters included follicular fluid (FF) estradiol and progesterone levels, theca and granulosa aromatase and reductase activities, and theca 17,20-lyase activity. Expression of proteins responsible for these activities, aromatase (P450arom) and 17 alpha-hydroxylase/17,20-lyase (P450c17) cytochromes P450, reductase, and for the first time in ovarian tissues cytochrome b5, were examined by Western immunoblot and immunocytochemistry. Theca and granulosa aromatase activities were as much as 100-fold lower than theca 17,20-lyase activity, but aromatase was correlated with only the log of FF estradiol. Granulosa reductase activity was twice that of the theca, and cytochrome b5 expression was clearly identified in both the theca and granulosa layers, as was P450arom, but was not highly correlated with either 17,20-lyase or aromatase activities. Reductase expression did not change with stage of follicular development, but cytochrome b5, P450c17, and P450arom were markedly lower in post-LH tissues. These data indicate that aromatase and not 17,20-lyase must limit porcine follicular estradiol synthesis, but this limitation is not reflected acutely in FF steroid concentrations. Neither reductase nor cytochrome b5 appear to regulate P450 activities, but the expression of cytochrome b5 in granulosa and theca suggests possible alternative roles for this protein in follicular development or function.  相似文献   

16.
These studies were undertaken to determine the principal pathway of androgen biosynthesis by the testis of the marmoset Saguinus oedipus. Testicular fragments (25 mg) were incubated at 37°C in Krebs-Ringer bicarbonate buffer, pH 7.4, containing pregnenolone-7-3H (3β-hydroxy-5-pregnen-20-one) or progesterone-7-3H. Duplicate fragments were incubated with each substrate for 30 min, one hr, three hr, or five hr, for a total of 16 separate incubations. Metabolites were separated by paper and thin-layer chromatography, with identity established by recrystallization to constant specific activities and 3H/14C ratios. Pregnenolone was readily metabolized to progesterone, 17α-hydroxyprogesterone, androstenedione (4-androstene-3, 17-dione) and testosterone. Progesterone was converted to 17α-hydroxyprogesterone, androstenedione and testosterone. 17α-hydroxyprogesterone was the predominant metabolite obtained from both substrates at one, three and five hrs of incubation. Neither 17α-hydroxypregnenolone (3β-17-dihydroxy-5-pregnen-20-one) nor dehydroepiandrosterone (3β-hydroxy-5-androsten17-one) was detected in the incubates. These data suggest a predominant Δ4 pathway with accumulation of 17α-hydroxyprogesterone in the testis of this primate specie.  相似文献   

17.
Our objective was to study the direct action of a GnRH-I agonist, leuprolide acetate (LA), on ovarian steroidogenesis in preovulatory follicles obtained from equine chorionic gonadotropin (eCG)-treated rats. Previously, we have demonstrated an inhibitory effect of LA on steroidogenesis and follicular development. In this study, we tested the hypothesis that gonadotropin-releasing hormone (GnRH) exerts its negative effect on follicular development by inhibiting thecal cytochrome P-450 C17 (P450C17) alpha-hydroxylase expression and, consequently, androgen synthesis. Studies were carried out in prepubertal female rats injected with either eCG (control) or eCG plus LA (LA) and killed at different time points. Immunohistochemical studies indicated that LA induced steroidogenic acute regulatory protein (StAR) expression mainly in theca cells of preantral and antral follicles. In addition, serum progesterone levels increased significantly (P < 0.05), whereas those of androsterone decreased (P < 0.05) after 8 h of LA treatment. This inhibition caused by LA seemed to be a consequence of the decreased expression of follicular P450C17 alpha-hydroxylase, as demonstrated by Western blot and RT-PCR techniques. In vitro studies using follicles isolated from 48-h-eCG-treated rats and cultured with LA showed a significant (P < 0.05) inhibition of FSH-induced androsterone follicular content as well as P450C17 alpha-hydroxylase protein levels, as determined by Western analysis. However, LA increased StAR protein expression in these follicles without significant changes in P450scc enzyme levels. Taking all these findings into account, we suggest that GnRH-I exerts a direct inhibitory action on gonadotropin-induced follicular development by decreasing the temporal expression of the P450C17 enzyme and, consequently, androgen production, thus reducing the supply of estrogens available to developing follicles.  相似文献   

18.
Dispersed granulosa and theca interna cells were recovered from follicles of prepubertal gilts at 36, 72 and 108 h after treatment with 750 i.u. PMSG, followed 72 h later with 500 i.u. hCG to stimulate follicular growth and ovulation. In the absence of aromatizable substrate, theca interna cells produced substantially more oestrogen than did granulosa cells. Oestrogen production was increased markedly in the presence of androstenedione and testosterone in granulosa cells but only to a limited extent in theca interna cells. The ability of both cellular compartments to produce oestrogen increased up to 72 h with androstenedione being the preferred substrate. Oestrogen production by the two cell types incubated together was greater than the sum produced when incubated alone. Theca interna cells were the principal source of androgen, predominantly androstenedione. Thecal androgen production increased with follicular development and was enhanced by addition of pregnenolone or by LH 36 and 72 h after PMSG treatment. The ability of granulosa and thecal cells to produce progesterone increased with follicular development and addition of pregnenolone. After exposure of developing follicles to hCG in vivo, both cell types lost their ability to produce oestrogen. Thecal cells continued to produce androgen and progesterone but no longer responded to LH in vitro. These studies indicate that several functional changes in the steroidogenic abilities of the granulosa and theca interna compartments occur during follicular maturation.  相似文献   

19.
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ (EO), and the gonads. In this study, the histological and vascular relationships of the EO and ovarian follicles of the little skate, Leucoraja erinacea, were assessed. Perfusions of Evans blue dye and Batson's monomer showed a shared vascular pathway from the gonadal artery into the epigonal-ovary complex, with blood first entering the EO and then perfusing the ovarian follicles. Histological studies demonstrated direct cellular contact between epigonal leukocytes and the follicle wall (FW), as well as the presence of leukocytes between the steroidogenic theca and granulosa cells. In vitro analyses demonstrated that epigonal cells co-cultured with FW cells cause a dose-dependent inhibition of estrogen (E2) and testosterone (T) production. In contrast, conditioned media from epigonal leukocytes, stimulated or unstimulated with lipopolysaccharide (10 microg/ml), increase the production of E2 and T from FW cells of the ovaries. These studies provide a basis for further investigations of leukocyte secreted factors and cell contact modulation of follicular steroid production.  相似文献   

20.
The 5alpha-reduction of testosterone in target tissues is a key step in androgen physiology; however, 5alpha-reduced C(19) steroids are sometimes synthesized in testis via a pathway that does not involve testosterone as an intermediate. We studied the metabolism of 5alpha-reduced C(21) steroids by human cytochrome P450c17 (hCYP17), the enzyme responsible for conversion of C(21) steroids to C(19) steroids via its 17alpha-hydroxylase and 17,20-lyase activities. hCYP17 17alpha-hydroxylates 5alpha-pregnan-3,20-dione, but little androstanedione is formed by 17,20-lyase activity. hCYP17 also 17alpha-hydroxylates 5alpha-pregnan-3alpha-ol-20-one and the 5alpha-pregnan-3alpha,17alpha-diol-20-one intermediate is rapidly converted to androsterone by 17,20-lyase activity. Furthermore, 5alpha-pregnan-3alpha,17alpha-diol-20-one is a better substrate for the 17,20-lyase reaction than the preferred substrate 17alpha-hydroxypregnenolone and cytochrome b(5) stimulates androsterone formation only 3-fold. Both 5alpha-pregnan-3alpha-ol-20-one and 5alpha-pregnan-3alpha,17alpha-diol-20-one bind to hCYP17 with higher affinity than does progesterone. We conclude that 5alpha-reduced, 3alpha-hydroxy-C(21) steroids are excellent, high-affinity substrates for hCYP17. The brisk metabolism of 5alpha-pregnan-3alpha,17alpha-diol-20-one to androsterone by CYP17 explains how, when 5alpha-reductases are present, the testis can produce C(19) steroids androsterone and androstanediol from 17alpha-hydroxyprogesterone without the intermediacy of androstenedione and testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号