首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The structure of liquid hydrocarbons and fatty acids produced by the green alga Botryococcus was identified. Two representatives of this alga, Botryococcus braunii Kütz, strain IPPAS H-252, introduced into culture earlier and an organism isolated for the first time from the Shira Lake, were used for this identification. Fatty acid composition of B. braunii, strain H-252, lipids was characterized by a high content of trienoic acids of C16–C18 series. The hydrocarbon composition of this strain was represented by straight-chain and branched-chain C14–C28 components; long-chain linear aliphatic C20–C27 hydrocarbons (54.4%) and 2,6,10,14-tetramethylhexadecane (20.5%) predominated among them. The strain H-252 differed in its fatty acid and hydrocarbon composition from the strains described earlier as Botryococcus braunii. The fatty acid composition of the Botryococcus isolate was represented mainly by C12–C32 saturated and monoenoic acids. The hydrocarbons formed by this isolate were represented by dienoic and trienoic components. C29 (48.9–56.3%) and C31 (11.1–16.3%) hydrocarbons predominated among the C23–C31 dienoic hydrocarbons, and C27, C29, and C31 trienoic hydrocarbons comprised 2.5–2.6% of total hydrocarbons. This type of hydrocarbons and the lipid fatty acid composition were characteristic for the race A of B. braunii.  相似文献   

2.
Raman spectrometry and electron microscopy show that, in the hydrocarbon-rich alga Botryococcus braunii, hydrocarbons accumulate in two distinct sites; internally in cytoplasmic inclusions and externally in successive outer walls and derived globules. No other classes of lipid are present in noticeable amounts in the cytoplasmic inclusions and in the external globules. The same hydrocarbons are observed in the internal and external pools but with different relative abundances, the shorter hydrocarbons being more abundant in the internal pool. The bulk of B. braunii hydrocarbons (ca 95%) is located in the external pool. Such an extracellular location allows this species to exhibit both an unusually high hydrocarbon content (15% of dry wt) and a normal level (0.75%) within the cells. The hydrocarbon pattern and location of B. braunii were compared with that of other organisms; a close relation appears between higher plant epidermal cells and this green alga. The trilaminar outer walls of B. braunii, at whose contact external hydrocarbon globules accumulate, contain a sporopollenin-like compound.  相似文献   

3.
The alga Botryococcus braunii Kützing (Chlorophyceae) present in Liyu Lake (Huanlien County, Taiwan) has toxic effects on a variety of aquatic organisms. Blooms of this alga, which typically occur in autumn, are associated with fish deaths in this lake. Experiments using 15 phytoplankton and 5 zooplankton isolated from Liyu Lake indicate that these plankton exhibit various susceptibilities to B. braunii. A close correlation between the degree of susceptibility tested in the laboratory and the absence of certain phytoplankton during B. braunii blooms in the lake was observed, suggesting allelopathic effects. Isolation, identification, and verification with authentic compounds indicated that allelochemicals were a mixture of free fatty acids, including α‐linolenic, oleic, linolic, and palmitic acids. Compared with other phytoplankton isolates, B. braunii produced significantly higher amounts of free fatty acids, particularly of oleic and α‐linolenic acids. The role of these fatty acids in favoring dominance of B. braunii in the natural environment was elucidated.  相似文献   

4.
The outer walls of the green alga Botryococcus braunii (main sites of hydrocarbon production and accumulation) show a complex constitution. They comprise a biopolymer highly resistant to non-oxidative degradation. The resistant polymer accounts for ca 9% of the cell dry wt and appears, along with hydrocarbons, as one of the major constituents of the alga. In addition to chemical resistance, B. braunii polymer exhibits other properties: mode of deposition and fluorescence, often used to identify sporopollenins. (Class of wall components generally regarded as originating from polymerization of carotenoid derivatives.) Nevertheless further studies, using IR spectroscopy and high resolution 13C NMR of solids, along with determination of elemental composition and unsaturation levels, indicate that the bulk of the resistant polymer from B. braunii outer walls does not derive from carotenoids; accordingly it cannot be considered, in this respect, as a sporopollenin. In fact the information obtained on the structure of this important constituent of the alga is consistent with its formation via oxidative polymerization of B. braunii dienic hydrocarbons.  相似文献   

5.
The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.  相似文献   

6.
The green colonial alga Botryococcus braunii has unusually high levels of hydrocarbons. Two distinct sites of hydrocarbon accumulation are present in the species: an internal pool present in cytoplasmic inclusions and an external pool in the trilaminar outer walls and associated globules. It is generally assumed that the hydrocarbons are produced within the cells and then excreted into the external pool to maintain the intracellular content at a normal value. Various feeding experiments showed, however, that the radioactivity of the external pool is much higher than the internal one. On the other hand, there was no decrease in the labelling of internal hydrocarbons in chase experiments. Therefore, an excretory process apparently does not take place in B. braunii. The outer wall, therefore, is the main site of hydrocarbon accumulation and also the place where the bulk of B. braunii hydrocarbons are produced. The outer wall also is involved in the matrix of colony formation and the above findings account for the sharp decrease of hydrocarbon production which is associated with the loss of colonial habit. The cultures were also shown to be unable, under usual growth conditions, to catabolize their own hydrocarbons. Such a feature, along with the extracellular location of the main site of production, may account for the abnormally high content of hydrocarbons typical of B. braunii.  相似文献   

7.
New strains of the hydrocarbon rich alga Botryococcus braunii Kützing were isolated from water samples collected in three tropical freshwater lakes. These strains synthesize lycopadiene, a tetraterpenoid metabolite, as their sole hydrocarbon. The morphological and ultrastructural characteristics of these algae are similar to those reported for previously described strains which produce either alkadienes or botryococcenes. The pyriform shaped cells are embedded in a colonial matrix formed by layers of closely appressed external walls: this dense matrix is impregnated by the hydrocarbon and some other lipids. We believe the new strains synthesizing lycopadiene form a third chemical race in B. braunii, besides the alkadiene and botryococcene races, rather than a different species. Like the other two types of hydrocarbons, lycopadiene was produced primarily during the exponential and linear growth phases. The major fatty acid in the three races was oleic acid. This fatty acid was predominant in the alkadiene race; palmitic and octacosenoic acid also were present in appreciable amounts in the three races. Cholest-5-en-3β-ol, 24-methylcholest-5-en-3β-ol and 24-ethylcho-lest-5-en-3β-ol occurred in the three races; three unidentified sterols also were detected in the lycopadiene race. Moreover, the presence of very long chain alkenyl-phenols in the lipids of algae of the alkadiene race was not observed in the botryococcene and lycopadiene races. Of the polysaccharides released in the medium, galactose appeared as a primary component: it predominated in the botryococcene race. The other major constituents were fucose for the alkadiene race and glucose and fucose for the lycopadiene race. Although morphologically similar, some important chemical differences exist among algae classified as B. braunii.  相似文献   

8.
As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.

Highlights

Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.  相似文献   

9.
ABSTRACT:?

Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydrocarbons and other compounds by the alga; methods of culture; downstream recovery and processing of algal hydrocarbons; and cloning of the algal genes into other microorganisms. B. braunii converts simple inorganic compounds and sunlight to potential hydrocarbon fuels and feedstocks for the chemical industry. Microorganisms such as B. braunii can, in the long run, reduce our dependence on fossil fuels and because of this B. braunii continues to attract much attention.  相似文献   

10.
Botryococcus braunii was cultured in different light path length under different incident light intensity to investigate the effect of light on alga growth as well as hydrocarbon and fatty acid accumulation. Results indicated that longer light path length required higher incident light intensity in order to meet the light requirement of algal growth and hydrocarbon accumulation during the course of cultivation. However, hydrocarbon profile was only affected by the incident light intensity and not influenced by the light path length. High incident light intensity enhanced the accumulation of hydrocarbons with longer carbon chains. Besides, the fatty acid content and profiles were significantly influenced by both incident light intensity and light path. Higher fatty acid content and higher percentage of C18 and monounsaturated fatty acid components were achieved at the higher incident light intensity and lower light path length. Taken together, these results are benefit to improve its biomass and oil productivity through the optimization of light and photobioreactor design.  相似文献   

11.
Gas chromatography and combined gas chromatography-mass spectrometry have been used to study the fatty acids and hydrocarbons of a bacterium from the Pacific Ocean, Vibrio marinus, a freshwater blue-green alga, Anacystis nidulans, and algal mat communities from the Gulf of Mexico. Both types of microorganisms (bacteria and algae) showed relatively simple hydrocarbon and fatty acid patterns, the hydrocarbons predominating in the region of C-17 and the fatty acids in the range of C-14 to C-18. The patterns of V. marinus were more comparable to those of the algal populations than to patterns reported for other bacteria. An incomplete correlation between fatty acids and hydrocarbons in both types of organisms was observed, making it difficult to accept the concept that the biosynthesis of hydrocarbons follows a simple fatty acid decarboxylation process.  相似文献   

12.
Lipid composition and hydrocarbon structure of two colonial green algae of the genus Botryococcus, i.e., a museum strain and a field sample collected for the first time from Lake Shira (Khakasia, Siberia), have been compared. Polar lipids, diacylglycerols, alcohols, triacylglycerols, sterols, sterol esters, free fatty acids and hydrocarbons have been identified among lipids in the laboratory culture. The dominant fraction in the museum strain was formed by polar lipids (up to 50% of the lipids) made up of fatty acids from C12 to C24. Palmitic, oleic, C16 - C18 dienoic and trienoic acids were the main fatty acids of the museum strain. Aliphatic hydrocarbons were found in the lipid of the museum strain. However, these amounted maximally to about 1% of the dry biomass at the end of exponential growth phase. The qualitative and quantitative compositions of FAs and hydrocarbons of the museum strain of Botryococcus, (registered at the Cambridge collection as Botryococcus braunii Kutz No LB 807/1 Droop 1950 H-252) differed from those of the Botryococcus strain described in the literature as Botryococcus braunii. The Botryococcus sp. found in Lake Shira is characterized by a higher lipid content (<40% of the dry weight). Polar lipids, sterols, triacylglycerols, free fatty acids and hydrocarbons have been identified among lipids in the field sample. The main lipids in this sample were dienes and trienes (hydrocarbons <60% of total lipid). Monounsaturated and very long chain monounsaturated fatty acids, including C28:1 and C32:1 acids, were identified in the Botryococcus found in Lake Shira. The chemo-taxonomic criteria allow us to unequivocally characterize the organism collected from Lake Shira as Botryococcus braunii, race A.  相似文献   

13.
The influence of nitrogen (N) deficiency on the cell growth and intracellular lipid production of the alga Botryococcus braunii UTEX 572 was investigated. Biomass concentration and lipid content of B. braunii cultivated in modified Chu-13 medium containing 0.04, 0.37, and 3.66 mM nitrate were 0.23–0.38 g L−1 and 36–63% of dry cell weight, respectively. The specific growth rate of B. braunii reached a constant of 0.185 day−1 during cultivation with an initial nitrate feed of 3.66 mM. The maximum lipid content of B. braunii was 63% with 0.04 mM nitrate. However, the maximum lipid productivity of 0.019 g L−1 day−1 was achieved with 0.37 mM nitrate. The level of oleic acid, an important component of biodiesel, was higher at 86% of the total fatty acids under N-limited conditions (0.04 mM nitrate) compared to 69% under N-sufficient conditions (3.66 mM nitrate). Furthermore, expression of the stearoyl-ACP desaturase gene (sad) encoding a stearoyl-ACP desaturase involved in the synthesis of oleic acid was 2.6-fold higher under N-limited conditions than under N-sufficient conditions.  相似文献   

14.
To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.  相似文献   

15.
16.
The production of labelled aliphatic hydrocarbons in Anacystis montana and Botryococcus braunii has been studied using Na2CO3 [14C] as a carbon source. The major hydrocarbon produced by A. montana is pentadecane (ca 93%) accompanied by a pentadecene (ca 4%) and other hydrocarbons in the range C13-C17. Long chain (C21-C 33) hydrocarbons could not be detected in this organism. The variety of unsaturated hydrocarbons (C25-C31) previously reported in Botryococcus braunii is confirmed and contrasts with the synthesis of unsaturated C17 hydrocarbons only, in axenic cultures prepared from single cell isolates of this colonial alga.  相似文献   

17.
The in vivo hydrocarbon biosynthesis in the millipede Graphidostreptus tumuliporus was studied after the injection of 1-14C-acetate, 16-14C-, and 1-14C-palmitic acid.From all precursors used an active incorporation into the unsaturated hyrocarbons (alk-1-enes, alkadienes, and alkatrienes) was observed, whereas no radioactivity was incorporated into the saturated alkanes at all, in accordance with their supposed exogenous origin (food). From the distribution of the radiolabel over both the various hydrocarbon classes and the individual hydrocarbon components it was concluded that in this millipede hydrocarbons are synthesized from fatty acids (irrespective of their chain structure) by an elongation-decarboxylation mechanism in which an α-oxidation step is involved, whilst during the decarboxylation process a terminal double bond is introduced. Thus, saturated fatty acids give rise to alk-1-enes (as is evidenced by an overwhelming incorporation of palmitic acid into the alk-1-enes), monoenoic fatty acids to alkadienes, and dienoic fatty acids to alkatrienes.The proposed mechanism for hydrocarbon biosynthesis in G. tumuliporus has not yet been described in other organisms.  相似文献   

18.
Among oleaginous microalgae, the colonial green alga Botryococcus braunii accumulates especially large quantities of hydrocarbons. This accumulation may be achieved more by storage of lipids in the extracellular space rather than in the cytoplasm, as is the case for all other examined oleaginous microalgae. The stage of hydrocarbon synthesis during the cell cycle was determined by autoradiography. The cell cycle of B. braunii race A was synchronized by aminouracil treatment, and cells were taken at various stages in the cell cycle and cultured in a medium containing [14C]acetate. Incorporation of 14C into hydrocarbons was detected. The highest labeling occurred just after septum formation, when it was about 2.6 times the rate during interphase. Fluorescent and electron microscopy revealed that new lipid accumulation on the cell surface occurred during at least two different growth stages and sites of cells. Lipid bodies in the cytoplasm were not prominent in interphase cells. These lipid bodies then increased in number, size, and inclusions, reaching maximum values just before the first lipid accumulation on the cell surface at the cell apex. Most of them disappeared from the cytoplasm concomitant with the second new accumulation at the basolateral region, where extracellular lipids continuously accumulated. The rough endoplasmic reticulum near the plasma membrane is prominent in B. braunii, and the endoplasmic reticulum was often in contact with both a chloroplast and lipid bodies in cells with increasing numbers of lipid bodies. We discuss the transport pathway of precursors of extracellular hydrocarbons in race A.  相似文献   

19.
分子生态学是研究生命系统与环境系统相互作用机理及其分子机制的科学,可以从宏观和微观结合的角度真实反映生态现象的本质。简述产烃布朗葡萄藻形态与化学种等生理生态特征的基础上,综述了近年来国内外布朗葡萄藻分子生态学研究的新进展,主要包括分子系统发育学及其与化学种、基因组、地理来源等之间的关系。经典分类学上,关于布朗葡萄藻属于绿藻门(Chlorophyta)还是黄藻门(Xanthophyta)存在争议,而基于18S核糖体核糖核酸(18S ribosomal ribonucleic acid,18S rRNA)序列的分子系统发育学研究结果将布朗葡萄藻界定为绿藻门、共球藻纲(Trebouxiophyceae)。依据藻株的产烃种类和化学结构特征,可将布朗葡萄藻划分为A、B和L 3个化学种,而布朗葡萄藻的分子系统学进化关系与化学种间高度统一。在基因组大小上,位于同一大亚聚群中的化学种B与L间却存在明显差异,而进化关系较远的化学种B与A间则更相近。不同地理来源布朗葡萄藻的18S rRNA序列和内部转录间隔区(internal transcribed spacer,ITS)多态性较高,提示不同地缘藻株间存有较高的遗传多样性。探讨了布朗葡萄藻分子生态学研究尚待解决的问题,并对今后相关研究做了展望。  相似文献   

20.
We report the genome size and the GC content, and perform a phylogenetic analysis on Botryococcus braunii Kütz., a green, colony‐forming, hydrocarbon‐rich alga that is an attractive source for biopetroleum. While the chemistry of the hydrocarbons produced by the B race of B. braunii has been studied for many years, there is a deficiency of information concerning the molecular biology of this alga. In addition, there has been some discrepancy as to the phylogenetic placement of the Berkeley (or Showa) strain of the B race. To clarify its classification, we isolated the Berkeley strain nuclear SSU (18S) rRNA gene and β‐actin cDNA and used these sequences for phylogenetic analysis to determine that the Berkeley strain belongs to the Trebouxiophyceae class. This finding is in agreement with other B races of B. braunii, indicating the Berkeley strain is a true B race of B. braunii. To better understand molecular aspects of B. braunii, we obtained the Berkeley strain genome size as a first step in genome sequencing. Using flow cytometry, we determined the B. braunii Berkeley genome size to be 166.2 ± 2.2 Mb. We also estimated the GC content of the Berkeley strain as 54.4 ± 1.2% for expressed gene sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号