首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relatively large amounts of the polycis compounds, pro-γ-carotene and prolycopene were administered to chicks or hens. About four-fifths of the pigment was destroyed, and the rest occurred mainly in the feces. Far-reaching bio-stereoisomerization took place that yielded all-trans and some neo-forms of the compound administered, besides polycis isomers, in part possessing more cis double bonds than the starting material. Some observations on the behavior of all-trans-lycopene in chicks are reported.  相似文献   

2.
Considerable changes in pigment composition accur during a period of 10 h when dark-grown cultures of PG1, a -carotenic strain of Scenedesmus obliquus, are illuminated. These changes are consistent with a biosynthetic pathway in which 15-cis-phytoene is converted via 15-cis-phytofluene and 15-cis--carotene into all-trans-gz-carotene and trans-bicyclic carotenoids.The findings also support the view that the xanthophylls lutein and zeaxanthin are formed from the corresponding carotenes and are especially important in the development of a normal chloroplast structure.Non-Standard Abbreviations TLC thin-layer chromatography  相似文献   

3.
The conversion of cis-[14C]phytofluene to trans-[14C]phytofluene and the conversion of the latter to trans-ζ-[14C]carotene by a soluble enzyme system obtained from plastids of tangerine tomato fruits is reported. Each of these compounds is also converted to cis-ζ-carotene, proneurosporene, prolycopene, neurosporene, lycopene, and γ- and β-carotenes. [14C]Prolycopene was also incubated with the above enzyme system. No conversion of this compound to trans-lycopene or cyclic carotenes was observed. Proof for the formation of the above carotenes from each of the substrates mentioned above was obtained by cochromatography with authentic samples on an alumina column. A close correspondence between radioactivity and light absorbance of each carotene was observed. Further proof for the formation of acyclic and cyclic carotenes from the above radioactive substrates was obtained by gas-liquid chromatography of the hydrogenated products. Coincidence between mass and radioactivity was observed in each case.  相似文献   

4.
Cis-ζ-carotene was isolated, purified in several chromatographic systems, and then identified as an intermediate in the biosynthesis of poly-cis-carotenes. The structure of cis-ζ-carotene was tentatively established from its visible light-absorption spectrum, and by a comparison of the infrared spectrum with that of trans-ζ-carotene. Confirmation of the identity of this compound was obtained by high resolution mass spectroscopy. The presence of the cis-configuration was indicated by a bathochromic shift of 6–10 nm in the visible spectrum when the compound was subjected to iodinecatalyzed photoisomerization. The infrared spectrum also showed characteristic peaks for the cis-configuration. Proof of the conversion of cis-ζ-[14C]carotene to trans-ζ-carotene, proneurosporene, prolycopene, neurosporene, lycopene, β- and γ carotenes was obtained on incubation with soluble enzyme systems obtained from plastids of fruits of two different tangerine varieties of tomato. Proof for the formation of each of the carotenes was provided by column and thin-layer chromatography A close correspondence of radioactivity and optical density was observed for each carotene. Additional proof was obtained by gas-liquid chromatography of each hydrogenated carotene. A coincidence of mass and radioactivity was observed for each carotene.  相似文献   

5.
In order to broaden the available genetic variation of melon, we developed an ethyl methanesulfonate mutation library in an orange-flesh ‘Charentais’ type melon line that accumulates β-carotene. One mutagenized M2 family segregated for a novel recessive trait, a yellow–orange fruit flesh (‘yofI’). HPLC analysis revealed that ‘yofI’ accumulates pro-lycopene (tetra-cis-lycopene) as its major fruit pigment. The altered carotenoid composition of ‘yofI’ is associated with a significant change of the fruit aroma since cleavage of β-carotene yields different apocarotenoids than the cleavage of pro-lycopene. Normally, pro-lycopene is further isomerized by CRTISO (carotenoid isomerase) to yield all-trans-lycopene, which is further cyclized to β-carotene in melon fruit. Cloning and sequencing of ‘yofI’ CRTISO identified two mRNA sequences which lead to truncated forms of CRTISO. Sequencing of the genomic CRTISO identified an A–T transversion in ‘yofI’ which leads to a premature STOP codon. The early carotenoid pathway genes were up regulated in yofI fruit causing accumulation of other intermediates such as phytoene and ζ-carotene. Total carotenoid levels are only slightly increased in the mutant. Mutants accumulating pro-lycopene have been reported in both tomato and watermelon fruits, however, this is the first report of a non-lycopene accumulating fruit showing this phenomenon.  相似文献   

6.
Ben-Amotz A  Lers A  Avron M 《Plant physiology》1988,86(4):1286-1291
Dunaliella bardawil, a halotolerant green alga, was previously shown to accumulate high concentrations of β-carotene when grown outdoors under defined conditions. The β-carotene of algae cultivated under high light intensity in media containing a high salt concentration is composed of approximately 50% all-trans β-carotene and 40% 9-cis β-carotene. We show here that the 9-cis to all-trans ratio is proportional to the integral light intensity to which the algae are exposed during a division cycle. In cells grown under a continuous white light of 2000 microeinsteins per square meter per second, the ratio reached a value of around 1.5, while in cells grown under a light intensity of 50 microeinsteins per square meter per second, the ratio was around 0.2. As previously shown, algae treated with the herbicide norflurazon accumulate phytoene in place of β-carotene. Electron micrographs showed that the phytoene is accumulated in many distinct globules located in the interthylakoid spaces of the chloroplast. Here too, two isomers are present, apparently all-trans and 9-cis phytoene, and their ratio is dependent upon the integral light intensity to which the algae are exposed during a division cycle. In the presence of norflurazon, Dunaliella bardawil grown under a light intensity of 2000 microeinsteins per square meter per second contained about 8% phytoene with a 9-cis to all-trans ratio of about 1.0. This ratio decreased to about 0.1 when the light intensity was reduced to 50 microeinsteins per square meter per second. These data suggest that the isomerization reaction which leads to the production of the 9-cis isomer occurs early in the path of carotene biosynthesis, at or before the formation of all-trans phytoene. The presence of the 9-cis isomer of β-carotene and the dependence of its preponderance on light intensity seem to be a common feature of many plant parts. Thus carrots which are exposed to minimal light contain no 9-cis isomer while sun-exposed leaves, fruits, and flowers contain 20 to 50% of the 9-cis isomer.  相似文献   

7.
The intracellular and intraplastidic distribution of carotenoids has been investigated in radish seedlings grown in the presence of the herbicides amitrole and SAN 6706. Both herbicides caused bleaching and the plants became deficient in chlorophylls and the usual chloroplast cyclic carotenoids, but accumulated the acyclic carotenoid biosynthetic intermediates 15-cis-phytoene and all-trans-lycopene. In both the untreated and herbicide-treated plants all carotenoids, including phytoene and lycopene, were contained in the plastid. In all cases the normal cyclic carotenoids were located virtually exclusively in the thylakoid or prothylakoid fraction. In amitrole-treated plants, lycopene also was contained only in the thylakoid fraction, whereas phytoene, in these and in SAN 6706-treated plants, was detected in both the thylakoid fraction and an envelope preparation. Possible implications for the biosynthesis of the carotenoids are discussed.  相似文献   

8.
Breitenbach J  Sandmann G 《Planta》2005,220(5):785-793
The plant carotenoid biosynthetic pathway to cyclic carotenes proceeds via carotene precursors in cis configuration. Involvement of individual isomers was elucidated by genetic complementation of desaturations and in vitro reactions of the corresponding enzyme. Determination of substrate and product specificity of phytoene and -carotene desaturase revealed that 15-cis-phytoene is converted to 9,15,9-tricis--carotene with 15,9-dicis-phytofluene as intermediate by the first desaturase. Prior to a subsequent conversion by -carotene desaturase, the 15-cis double bond of 9,15,9-tricis--carotene has to be (photo)isomerized to all-trans. Then, the resulting 9,9-dicis--carotene is utilized by -carotene desaturase via 7,9,9-tricis-neurosporene to 7,9,7,9-tetracis-lycopene. Other -carotene isomers that are assumed to be spontaneous isomerization products were not converted, except for the asymmetric 9-cis--carotene. This isomer is desaturated only to 7,9-dicis-neurosporene resembling a dead-end of the pathway. Prolycopene, the product of the desaturation reactions, is finally isomerized by a specific isomerase to all-trans-lycopene, which is a prerequisite for cyclization to -carotene. The 5-cis-lycopene and the 9-cis-and 13-cis--carotene isomers detected in leaves are thought to originate independently from cis precursors by non-enzymatic isomerization of their all-trans forms.  相似文献   

9.
The role of 9-cis-β-carotene (9-cis-β-C) as a potential precursor of 9-cis-retinoic acid (9-cis-RA) has been examined in human intestinal microcosa in vitro. By using HPLC, uv spectra, and chemical derivatization analysis, both 9-cis-RA and all-trans-retinoic acid (all-trans-RA) have been identified in the postnuclear fraction of human intestinal microcosa after incubation with 9-cis-β-C at 37°C. The biosynthesis of both 9-cis-RA and all-trans-RA from 9-cis-β-C was linear with increasing concentrations of 9-cis-β-C (2-30 μM) and was linear with respect to tissue protein concentration up to 0.75 mg/ml. Retinoic acid was not detected when a boiled incubation mixture was incubated in the presence of 9-cis-β-C. The rate of synthesis of 9-cis- and all-trans-RA from 4 μM 9-cis-β-C were 16 ± 1 and 18 ± 2 pmol/hr/mg of protein, respectively. However, when 2 μM all-trans-β-C was added to the 4 μM 9-cis-β-C, the rate of all-trans-RA synthesis was increased to 38 ± 6 pmol/hr/mg of protein, whereas the rate of 9-cis-RA synthesis remained the same. These results suggest that 9-cis-RA is produced directly from 9-cis-β-C. Furthermore, incubations of either 0.1 μM 9-cis- or all-trans-retinal under the same incubation conditions showed that 9-cis-RA could also arise through oxidative conversion of 9-cis-retinal. Although only 9-cis-RA was detected when 9-cis-RA was used as the substrate, the isomerization of the all-trans-RA to 9-cis-RA cannot be ruled out, since both all-trans-RA and trace amounts of 9-cis-RA were detected when all-trans-retinal was incubated as the substrate. These data indicate that 9-cis-β-C can be a source of 9-cis-RA in the human. This conversion may have a significance in the anticarcinogenic action of β-C.  相似文献   

10.
This paper reports the conversion of cis-[14C]phytofluene to trans-[14C|phytofluene and the conversion of the latter compound to trans-ζ-[14C]carotene by a soluble enzyme system obtained from the plastids of red tomato fruits. Each of these radioactive compounds was also converted to labeled neurosporene, lycopenc, α-carotene, and β-carotene by the same enzyme system. The incorporation of each substrate into more unsaturated carotenes was carried out under nitrogen at pH 7.5–8.2 (borate buffer), at 25 °C in the dark.Proof of the formation of the above carotenes from each of the three radioactive substrates was demonstrated by cochromatography with authentic nonradioactive carotenes on an alumina chromatographic column. A close correspondence between radioactivity and light absorbance for each carotene was observed. Confirmation of these conversions was achieved by cochromatography with authentic samples on thinlayer plates. Final proof for the formation of the acyclic and cyclic carotenes from the above radioactive substrates was obtained by gas-liquid chromatography of the hydrogenated products. Coincidence between mass and radioactivity was observed.Maximum conversion of cis- and trans-phytofluenes to more unsaturated carotenes by the red tomato fruit enzyme system appears to be dependent upon the presence of NADP+, FAD, and Tween 80. The formation of the carotenes is also increased in the presence of Mg2+ or Mn2+ ions.  相似文献   

11.
ABSTRACT:?

Lycopene is the pigment principally responsible for the characteristic deep-red color of ripe tomato fruits and tomato products. It has attracted attention due to its biological and physicochemical properties, especially related to its effects as a natural antioxidant. Although it has no provitamin A activity, lycopene does exhibit a physical quenching rate constant with singlet oxygen almost twice as high as that of β-carotene. This makes its presence in the diet of considerable interest. Increasing clinical evidence supports the role of lycopene as a micronutri-ent with important health benefits, because it appears to provide protection against a broad range of epithelial cancers. Tomatoes and related tomato products are the major source of lycopene compounds, and are also considered an important source of carotenoids in the human diet. Undesirable degradation of lycopene not only affects the sensory quality of the final products, but also the health benefit of tomato-based foods for the human body. Lycopene in fresh tomato fruits occurs essentially in the all-trans configuration. The main causes of tomato lycopene degradation during processing are isomerization and oxidation. Isomerization converts all-trans isomers to cis-isomers due to additional energy input and results in an unstable, energy-rich station. Determination of the degree of lycopene isomerization during processing would provide a measure of the potential health benefits of tomato-based foods. Thermal processing (bleaching, retorting, and freezing processes) generally cause some loss of lycopene in tomato-based foods. Heat induces isomerization of the all-trans to cis forms. The cis-isomers increase with temperature and processing time. In general, dehydrated and powdered tomatoes have poor lycopene stability unless carefully processed and promptly placed in a hermetically sealed and inert atmosphere for storage. A significant increase in the cis-isomers with a simultaneous decrease in the all-trans isomers can be observed in the dehydrated tomato samples using the different dehydration methods. Frozen foods and heat-sterilized foods exhibit excellent lycopene stability throughout their normal temperature storage shelf life.

Lycopene bioavailability (absorption) can be influenced by many factors. The bioavailability of cis-isomers in food is higher than that of all-trans isomers. Lycopene bioavailability in processed tomato products is higher than in unprocessed fresh tomatoes. The composition and structure of the food also have an impact on the bioavailability of lycopene and may affect the release of lycopene from the tomato tissue matrix. Food processing may improve lycopene bioavailability by breaking down cell walls, which weakens the bonding forces between lycopene and tissue matrix, thus making lycopene more accessible and enhancing the cis-isomerization. More information on lycopene bioavailability, however, is needed. The pharmacokinetic properties of lycopene remain particularly poorly understood. Further research on the bioavalability, pharmacology, biochemistry, and physiology must be done to reveal the mechanism of lycopene in human diet, and the in vivo metabolism of lycopene.

Consumer demand for healthy food products provides an opportunity to develop lycopene-rich food as new functional foods, as well as food-grade and pharmaceutical-grade lycopene as new nutraceutical products. An industrial scale, environmentally friendly lycopene extraction and purification procedure with minimal loss of bioactivities is highly desirable for the foods, feed, cosmetic, and pharmaceutical industries. High-quality lycopene products that meet food safety regulations will offer potential benefits to the food industry.  相似文献   

12.
The resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C as well as those of the cis-trans isomers of β-carotene (all-trans, 9-cis, 13-cis, 15-cis and 9-cis, 13-cis- (or 9-cis, 13′-cis)) have been recorded at liquid N2 temperature by use of the 457.9, 488.0 and 514.5 nm excitation lines. Comparison of the spectra indicated that the carotenoid in the reaction center takes the 15-cis configuration.  相似文献   

13.
When grown under defined conditions Dunaliella bardawil accumulates a high concentration of β-carotene, which is composed primarily of two isomers, all-trans and 9-cis β-carotene. The high β-carotene alga is substantially resistant to photoinhibition of photosynthetic oxygen evolution when compared with low β-carotene D. bardawil or with Dunaliella salina which is incapable of accumulating β-carotene. Protection against photoinhibition in the high β-carotene D. bardawil is very strong when blue light is used as the photoinhibitory agent, intermediate with white light, and nonexistent with red light. These observations suggest that the massively accumulated β-carotene in D. bardawil protects the alga against damage by high irradiation by screening through absorption of the blue region of the spectrum. Irradiation of D. bardawil by high intensity blue light results in the following temporal sequence of events: photoinhibition of oxygen evolution, photodestruction of 9-cis β-carotene, photodestruction of all-trans β-carotene, photodestruction of chlorophyll and cell death.  相似文献   

14.
Photoisomerization of the chromophore of squid rhodopsin is dependent upon the irradiation temperature. Above 0°C, only 11-cis ? all-trans reaction proceeds and the all-trans → 9-cis reaction is limited to extremely low frequency. At liquid nitrogen temperature, 11-cis ? all-trans ? 9-cis reaction takes place. At intermediary low temperatures (?80°C to ?15°C) another isomer of retinal may be produced by the irradiation, which forms a pigment having an absorbance maximum at 465 nm (P-465). The formation of P-465 decreases remarkably in the narrow temperature range from ?30°C to 0°C where mesorhodopsin converts to metarhodopsin. Mesorhodopsin is quite different from metharhodopsin in the photoisomerization of the chromophore because P-465 is produced from the former but not from the latter. No P-465 is produced both at liquid nitrogen temperature and above 0°C. P-465 is more labile than any of the other photoproducts so far known, that is isorhodopsin, alkaline and acid metarhodopsins. P-465 is converted to metarhodopsin by irradiation.  相似文献   

15.
Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.  相似文献   

16.
The carotenoid-less reaction centers isolated from Rhodopseudomonas sphaeroides (strain R 26) bind pure all-trans spheroidene as well as spheroidenone in a nearly 1:1 molar ratio with respect to P-870. Neither β-carotene nor spirilloxanthin, both absent from wild-type Rps. sphaeroides, could be bound in appreciable amounts. Resonance Raman spectra of the carotenoidreaction center complex indicate that the carotenoid is bound as a cis isomer, its conformation being very close, although probably not identical, to that assumed by the carotenoid in the wild-type reaction centers. The electronic absorption spectra of the carotenoid-reaction center complexes are in good agreement with such a interpretation. When bound to the R 26 reaction centers, spheroidene displays light-induced absorbance changes identical in peak wavelengths and comparable in amplitudes to those observed in the wild-type reaction centers. Thus the binding of the carotenoid to the R 26 reaction centers most likely occurs at the same proteic site as in the wild-type reaction centers. This site shows selectivity towards the nature of carotenoids, and has the same sterical requirement as in the wild type, leading to the observed all-trans to cis isomerisation.  相似文献   

17.
In the vertebrate retina, phototransduction, the conversion of light to an electrical signal, is carried out by the rod and cone photoreceptor cells1-4. Rod photoreceptors are responsible for vision in dim light, cones in bright light. Phototransduction takes place in the outer segment of the photoreceptor cell, a specialized compartment that contains a high concentration of visual pigment, the primary light detector. The visual pigment is composed of a chromophore, 11-cis retinal, attached to a protein, opsin. A photon absorbed by the visual pigment isomerizes the chromophore from 11-cis to all-trans. This photoisomerization brings about a conformational change in the visual pigment that initiates a cascade of reactions culminating in a change in membrane potential, and bringing about the transduction of the light stimulus to an electrical signal. The recovery of the cell from light stimulation involves the deactivation of the intermediates activated by light, and the reestablishment of the membrane potential. Ca2+ modulates the activity of several of the enzymes involved in phototransduction, and its concentration is reduced upon light stimulation. In this way, Ca2+ plays an important role in the recovery of the cell from light stimulation and its adaptation to background light.Another essential part of the recovery process is the regeneration of the visual pigment that has been destroyed during light-detection by the photoisomerization of its 11-cis chromophore to all-trans5-7. This regeneration begins with the release of all-trans retinal by the photoactivated pigment, leaving behind the apo-protein opsin. The released all-trans retinal is rapidly reduced in a reaction utilizing NADPH to all- trans retinol, and opsin combines with fresh 11-cis retinal brought into the outer segment to reform the visual pigment. All-trans retinol is then transferred out of the outer segment and into neighboring cells by the specialized carrier Interphotoreceptor Retinoid Binding Protein (IRBP).Fluorescence imaging of single photoreceptor cells can be used to study their physiology and cell biology. Ca2+-sensitive fluorescent dyes can be used to examine in detail the interplay between outer segment Ca2+ changes and response to light8-12 as well as the role of inner segment Ca2+ stores in Ca2+ homeostasis13,14. Fluorescent dyes can also be used for measuring Mg2+ concentration15, pH, and as tracers of aqueous and membrane compartments16. Finally, the intrinsic fluorescence of all-trans retinol (vitamin A) can be used to monitor the kinetics of its formation and removal in single photoreceptor cells17-19.Download video file.(70M, mov)  相似文献   

18.
cis-Phytoene and trans-phytofluene were identified in illuminated cultures of Verticillium agaricinum in addition to the other carotenoids  相似文献   

19.
Carotenoid composition in leaves of normal, lycopenic and ζ-carotenic mutants of Zea mays were investigated. In lycopenic leaves, in addition to lycopene, phytoene, phytofluene, δ- and γ-carotene, trace amounts of α- and β-carotene and antheraxanthin were identified. Low light promoted accumulation of α- and β-carotene; high light brought about an increase in antheraxanthin content. In the leaves of the ζ-carotenic mutant, phytoene, phytofluene and ζ-carotene were synthesized. Illumination of low intensity stimulated carotenoid synthesis to a slight extent. Relative amounts of carotenoid components were essentially the same as in etiolated material, except for a small increase in cis-ζ-carotene. Under high intensity illumination, carotenoids were rapidly destroyed.  相似文献   

20.
By use of a new high-resolution high-pressure liquid chromatographic method for the separation of isomeric forms of retinol, retinal, retinyl ester and retinal oxime, various retinoids were analyzed in separated retinal pigment epithelial tissue or neural retinal tissue from fresh bleached bovine eyes after incubation in the dark at either 30 or 4°C for 90 min. 11-cis-Retinoids significantly increased during incubation at 30°C, relative to those at 4°C, in the retinal pigment epithelium, but not in the retina. The major forms of vitamin A in incubated retinal pigment epithelium and neural retina were retinyl esters (70%) and all-trans-retinol (69%), respectively. Thus, in keeping with observations on the isomerization of radioactive retinol in homogenates of eye tissues, the retinal pigment epithelium seems to be the primary site of 11-cis-retinoid formation from endogenous all-trans-retinoids in the bovine eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号