首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins containing reactive cysteine residues (protein-Cys) are receiving increased attention as mediators of hydrogen peroxide signaling. These proteins are mainly identified by mining the thiol proteomes of oxidized protein-Cys in cells and tissues. However, it is difficult to determine if oxidation occurs through a direct reaction with hydrogen peroxide or by thiol–disulfide exchange reactions. Kinetic studies with purified proteins provide invaluable information about the reactivity of protein-Cys residues with hydrogen peroxide. Previously, we showed that the characteristic UV–Vis spectrum of horseradish peroxidase compound I, produced from the oxidation of horseradish peroxidase by hydrogen peroxide, is a simple, reliable, and useful tool to determine the second-order rate constant of the reaction of reactive protein-Cys with hydrogen peroxide and peroxynitrite. Here, the method is fully described and extended to quantify reactive protein-Cys residues and micromolar concentrations of hydrogen peroxide. Members of the peroxiredoxin family were selected for the demonstration and validation of this methodology. In particular, we determined the pKa of the peroxidatic thiol of rPrx6 (5.2) and the second-order rate constant of its reactions with hydrogen peroxide ((3.4 ± 0.2) × 107 M? 1 s? 1) and peroxynitrite ((3.7 ± 0.4) × 105 M? 1 s? 1) at pH 7.4 and 25 °C.  相似文献   

2.
Background: We have previously shown that there were great discrepancies between different agents regarding their glutathione stimulating potential and that agents with mainly oxidative effects did not increase concentrations of glutathione in human cell cultures, in contrast to other thiol reactive agents. In order to evaluate whether increased glutathione degradation might be one reason for these discrepancies, we have investigated the effect of different agents with potential influence on glutathione metabolism in human cell cultures with or without acivicin inhibition of γ-glutamyltranspeptidase (GT), since GT is responsible for the initial degradation of glutathione. Methods: Intra- and extracellular concentrations of glutathione were investigated in HeLa and hepatoma cell cultures, with and without acivicin inhibition of GT, in the presence of oxidative and electrophilic agents (copper ions, hydrogen peroxide and N-ethylmaleimide), hydroquinone, reducing agents (lipoic acid and N-acetylcysteine), and a thiol reactive metal (mercury ions). Results: There were great discrepancies between the different agents regarding their maximal glutathione response (the sum of the intracellular and the extracellular amount of glutathione) in cell cultures. There was only a small increase in total glutathione in the presence of hydrogen peroxide or N-ethylmaleimide before the cell protein decreased compared to findings with mercury ions, lipoic acid or hydroquinone. In both HeLa and hepatoma cell cultures, there were correlations between the original glutathione amount and the total glutathione amount observed after acivicin inhibition. Conclusion: The relatively small increase of glutathione amount in the presence of oxidative and electrophilic agents compared to other thiol reactive agents is not due to increased GT degradation of glutathione.  相似文献   

3.
p-Hydroxyphenyl compounds [3-(p-hydroxyphenyl)propionic acid, p-hydroxyphenethyl alcohol, hordenine, p-ethylphenol, 3-(p-hydroxyphenyl)-1-propanol, p-n-propylphenol, and p-hydroxyphenyllactic acid] were recently found to be excellent fluorogenic substrates for the horseradish peroxidase-mediated reaction with hydrogen peroxide. A very rapid and sensitive method for the fluorometric assays of hydrogen peroxide and the peroxidase was established by using 3-(p-hydroxyphenyl)propionic acid as the best of these substrates; hydrogen peroxide can be assayed precisely in amounts as small as 0.1 nmol, with peroxidase activity as low as 7.8 μU.  相似文献   

4.
The effect of bicarbonate on the rates of the H2O2 oxidation of cysteine, gluthathione, and N-acetylcysteine to the corresponding disulfides was investigated. The relative oxidation rates at pH 8 for the different thiols are inversely related to the pKa values of the thiol groups, and the reactive nucleophiles are identified as the thiolate anions or their kinetic equivalents. The second-order rate constants at 25 °C for the reaction of the thiolate anions with hydrogen peroxide are 17 ± 2 M−1 s−1 for all three substrates. In the presence of bicarbonate (>25 mM), the observed rate of thiolate oxidation is increased by a factor of two or more, and the catalysis is proposed to be associated with the formation of peroxymonocarbonate from the equilibrium reaction of hydrogen peroxide with bicarbonate (via CO2). The calculated second-order rate constants for the direct reaction of the three thiolate anions with peroxymonocarbonate fall within the range of 900-2000 M−1 s−1. Further oxidation of disulfides by peroxymonocarbonate results in the formation of thiosulfonate and sulfonate products. These results strongly suggest that peroxymonocarbonate should be considered as a reactive oxygen species in aerobic metabolism with relevance in thiol oxidations.  相似文献   

5.
The abilities of kolaviron and selenium (either separately or in combination) to prevent hydrogen peroxide-induced alterations in cell viability and activation were investigated. The cell line U937 was incubated with the antioxidants (i.e. kolaviron or selenium) for 24?h before exposure to hydrogen peroxide and cell viability was assessed via trypan blue dye exclusion assay. The U937 cells were also transformed to the macrophage form, incubated with the antioxidants before exposure to hydrogen peroxide. Subsequently, production of nitric oxide and pro-inflammatory cytokines were assessed as indices of macrophage activation. The myoblast cell line H9c2 was also incubated with Se and kolaviron for 24?h before exposure to hydrogen peroxide. Cell viability and generation of reactive oxygen species (ROS) were assessed via MTT and DCHF assays. The results revealed that hydrogen peroxide significantly reduced (p?<?0.05) the viability of U937 cells which was ameliorated by kolaviron and selenium. Kolaviron and selenium also reduced hydrogen peroxide-induced secretion of nitric oxide, TNF-α, IL-1 and IL-6 by transformed U937 cells. Hydrogen peroxide also significantly reduced (p?<?0.05) the viability of H9c2 cells which was significantly restored by kolaviron. Though selenium had no effect on the proliferation of H9c2 cells, co-treatment with kolaviron significantly reduced hydrogen peroxide-induced alterations. Both kolaviron and selenium also reduced hydrogen peroxide-mediated ROS production by H9c2 cells. In all cases, the combined action of kolaviron and selenium offered greater amelioration of the hydrogen peroxide-induced alterations than their separate effects (p?<?0.05) but may not be synergistic or additive.  相似文献   

6.
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 103 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pKa reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 108 and 105 M− 1 s− 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pKa. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.  相似文献   

7.
8.
Changes in tyrosine phosphorylation of soluble polypeptides of pea (Pisum sativum L.) roots were revealed under the action of exogenous hydrogen peroxide in situ and in vitro. The polypeptides whose tyrosine phosphorylation in situ was vanadate-sensitive were identified. A thiol agent dithiothreitol and the antioxidant ascorbic acid reversed the effect of hydrogen peroxide in vitro. The results indicate that tyrosine phosphorylation of pea proteins is a subject to redox regulation.  相似文献   

9.
10.
A kinetic model able to adequately describe the accumulation of p-topaquinone in peroxidase-mediated oxidation of l-dopa was developed, and the rate constants for both enzymatic and non-enzymatic branch were estimated either experimentally or using a computing program for detailed kinetic simulation. It is demonstrated that the accumulation of p-topaquinone in significant amounts occurred in excess of hydrogen peroxide or during auto-oxidation of l-dopa, but changes in the ratio of initial concentrations of the reactants can reduce considerably the production of this intermediate.  相似文献   

11.
We have previously described an attenuated line of Leishmania infantum (H-line), selected by culturing promastigotes in vitro in the presence of gentamicin. To elucidate the molecular basis for this attenuation, we undertook a comparative proteomic analysis using multiplex 2-dimensional (2D) difference gel electrophoresis. Eighteen proteins that showed significant and reproducible changes in expression were identified. Many of these were components of the thiol-redox control system in Leishmania and this observation, validated by Western blot, prompted us to investigate the sensitivity of the attenuated line to oxidative stress. The attenuated line was found to be significantly more susceptible to hydrogen peroxide, a change which may explain the loss of virulence. In a direct assay of trypanothione-dependent peroxidase activity, hydrogen peroxide metabolism in the H-line was significantly lower than in wild type. Furthermore, trypanothione reductase activity was significantly lower in the H-line, suggesting that gentamicin selection may result in pleiotropic affects on thiol metabolism in Leishmania. A putative RNA-binding protein was very strongly up-regulated in the attenuated line, suggesting a possible target for gentamicin in Leishmania.  相似文献   

12.
Treatment of an isoenzyme of potato apyrase of high adenosine triphosphatase/adenosine diphosphatase (ATPase/ADPase) ratio with iodine, N-acetylimidazole or tetranitromethane inactivates the ATPase activity of this enzyme faster than its ADPase activity. There was protection by substrates with the two last-named substances. This and the appearance of nitrotyrosine suggests the participation of tyrosyl residues in both enzymic activities of potato apyrase. The participation of thiol groups is excluded by the insensitivity of apyrase to p-chloromercuribenzoate. Also, 2-hydroxy-5-nitrobenzyl bromide or carboxymethylation produce the same rate of inactivation of ATPase and ADPase activities. Substrates protect both activities from inactivation. Hydrogen peroxide and photo-oxidation inactivate ATPase activity faster than ADPase activity. There is no protection by substrates. Analysis of pH effects on Vmax. and Km suggest different pK values for the amino acid residues at the ATP and ADP sites.  相似文献   

13.
An intracellular N-terminal exopeptidase isolated from cell extracts of Streptococcus durans has been purified 470-fold to homogeneity (specific activity of 12.0 μmol/min per mg). In the absence of thiol compounds, the purified aminopeptidase undergoes a slow oxidation with a 70% loss of activity, which can be restored by the addition of 2 mM β-mercaptoethanol. The purified aminopeptidase (Mr 300 000) preferred L-peptide and arylamide substrates with small nonpolar or basic side chains. SDS electrophoresis yielded a single protein band corresponding to a molecular weight of 49 400, suggesting that the native enzyme is a hexameric protein. The enzyme-catalyzed hydrolysis of L-alanyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km(pK1 = 6.35; pK2 = 8.50) while the log Vmax versus pH profile showed only an acid limb (pK = 6.35). Methylene blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino acid analysis indicated that this photooxidative loss of activity corresponded to the modification of one histidine residue per enzyme monomer. N-Ethylmaleimide (100 mM) caused a 78% reduction in enzyme activity. Treatment of the enzyme with 1.0 mM hydrogen peroxide resulted in the oxidation of two cysteine residues per enzyme monomer and caused a 70% decrease in the catalytic activity.  相似文献   

14.
The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.  相似文献   

15.
Thiol redox state (TRS) refers to the balance between reduced thiols and their corresponding disulfides and is mainly reflected by the ratio of reduced and oxidized glutathione (GSH/GSSG). A decrease in GSH/GSSG, which reflects a state of thiol oxidative stress, as well as thiol modifications such as S-glutathionylation, has been shown to have important implications in a variety of cardiovascular diseases. Therefore, research models for inducing thiol oxidative stress are important tools for studying the pathophysiology of these disease states as well as examining the impact of pharmacological interventions on thiol pathways. The purpose of this study was to evaluate the use of a dithiocarbamate derivative, 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA), as a pharmacological model of thiol oxidative stress by examining the extent of thiol modifications induced in H9c2 rat cardiomyocytes and its impact on cellular functions. The extent of thiol oxidative stress produced by 2-AAPA was also compared to other models of oxidative stress including hydrogen peroxide (H2O2), diamide, buthionine sulfoximine, and N,N׳-bis(2-chloroethyl)-N-nitroso-urea. Results indicated that 2-AAPA effectively inhibited glutathione reductase and thioredoxin reductase activities and decreased the GSH/GSSG ratio by causing a significant accumulation of GSSG. 2-AAPA also increased the formation of protein disulfides as well as S-glutathionylation. The alteration in TRS led to a loss of mitochondrial membrane potential, release of cytochrome c, and increase in reactive oxygen species production. Compared to other models, 2-AAPA is more potent at creating a state of thiol oxidative stress with lower cytotoxicity, higher specificity, and more pharmacological relevance, and could be utilized as a research tool to study TRS-related normal and abnormal biochemical processes in cardiovascular diseases.  相似文献   

16.
Human peroxiredoxin 5 (PRDX5) catalyzes different peroxides reduction by enzymatic substitution mechanisms. Enzyme oxidation caused an increase in Trp84 fluorescence, allowing performing pre-steady state kinetic measurements. The technique was validated by comparing with data available from the literature or obtained herein by alternative approaches. PRDX5 reacted with organic hydroperoxides with rate constants in the 106-107 M−1 s−1 range, similar to peroxynitrite-mediated PRDX5 oxidation, whereas its reaction with hydrogen peroxide was slower (105 M−1 s−1). The method allowed determining the kinetics of intramolecular disulfide formation as well as thioredoxin 2-mediated reduction. The reactivities of PRDXs with peroxides were surprisingly high considering thiol pKa, indicating that other protein determinants are involved in PRDXs specialization. The order of reactivities between PRDX5 towards oxidizing substrates differ from other PRDXs studied, pointing to a selective action of PRDXs with respect to peroxide detoxification, helping to rationalize the multiple enzyme isoforms present even in the same cellular compartment.  相似文献   

17.
1. Thiol oxidation by a lipid peroxide or hydrogen peroxide was as efficient in denatured non-haem proteins as in small thiols. Both peroxides were relatively ineffective in oxidizing haemoprotein thiols, especially at low pH. Increased amounts of haematin decreased greatly the efficiency of GSH oxidation by peroxides especially at low pH. 2. Other than the haematin ring, the thiol group was found to be probably the group in proteins most sensitive to modification by peroxides. 3. At low concentrations, the fatty acid moiety of a lipid peroxide appeared to impede thiol oxidation in proteins, probably by hydrophobic bonding to the protein, rather than to stimulate thiol oxidation by denaturing the protein and thereby increasing the exposure and reactivity of the thiol group. 4. The relative rates of thiol oxidation by peroxides in the different thiols were: haemoprotein thiols>small thiols>other protein thiols. In all cases, thiol oxidation was much more rapid by the lipid peroxide than by hydrogen peroxide.  相似文献   

18.
The interaction of NADPH and hexobarbital during catalysis of microsomal mixed function oxidase-dependent hydrogen peroxide formation has been investigated in hepatic microsomes from phenobarbital-treated rabbits. The application of Job's method (25) of continuous variation revealed optimal conditions for the rate and extent of hydrogen peroxide formation when hexobarbital and NADPH were in equimolar amounts. The formation of a complex of 1 mol NADPH with cytochrome c-reductase and 1 mol hexobarbital with cytochrome P-450 seems to be responsible for limitation of hydrogen peroxide formation. Rate and extent of hydrogen peroxide formation are directly proportional to the amount of hexobarbital and NADPH present and are governed by the mass action equation in a manner similar to that reported for interaction of purified enzymes (G. T. Miwa, S. B. West, M. T. Huang, and A. H. Lu, 1979,J. Biol. Chem.254, 5695–5700). Depending on either the NADPH concentration maintained by a generating system or the hexobarbital concentration, the extent of hydrogen peroxide formation could be shown to be a function of either compound alone, as long as the other one is in excess. The question whether the formation of hydrogen peroxide depends on the availability of two independent one-electron transfer reactions forming O2? or of one simultaneous two-electron transfer forming O22? might thus become rather a matter of association of substrate and cosubstrate to a catalytically active complex in which the substrate augments the availability of reducing equivalents.  相似文献   

19.
20.
Maria Mubarakshina 《BBA》2006,1757(11):1496-1503
Hydrogen peroxide production in isolated pea thylakoids was studied in the presence of cytochrome c to prevent disproportionation of superoxide radicals outside of the thylakoid membranes. The comparison of cytochrome c reduction with accompanying oxygen uptake revealed that hydrogen peroxide was produced within the thylakoid. The proportion of electrons from water oxidation participating in this hydrogen peroxide production increased with increasing light intensity, and at a light intensity of 630 μmol quanta m− 2 s− 1 it reached 60% of all electrons entering the electron transport chain. Neither the presence of a superoxide dismutase inhibitor, potassium cyanide or sodium azide, in the thylakoid suspension, nor unstacking of the thylakoids appreciably affected the partitioning of electrons to hydrogen peroxide production. Also, osmolarity-induced changes in the thylakoid lumen volume, as well as variation of the lumen pH induced by the presence of Gramicidin D, had negligible effects on such partitioning. The flow of electrons participating in lumen hydrogen peroxide production was found to be near 10% of the total electron flow from water. It is concluded that a considerable amount of hydrogen peroxide is generated inside thylakoid membranes, and a possible mechanism, as well as the significance, of this process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号