首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for determining the subcellular metabolite levels in spinach protoplasts is described. The protoplasts are disrupted by centrifugation through a nylon net, releasing intact chloroplasts which pass through a layer of silicone oil into perchloric acid while the remaining cytoplasmic components remain over the oil and are simultaneously quenched as acid is centrifuged into them. Cross-contamination is measured and corrected for using ribulose 1,5-bisphosphate as a chloroplastic marker and phosphoenolpyruvate carboxylase as a cytoplasmic marker. A method for separation of intact protoplasts from the medium by silicone oil centrifugation is described, which allows a correction to be made for the effect of free chloroplasts and broken protoplasts. Methods for inhibiting chloroplast photosynthesis, without inhibiting protoplasts, are presented. It is demonstrated that ribulose 1,5-bisphosphate, ATP, ADP, AMP, inorganic phosphate, hexose phosphate, triose phosphate, fructose 1,6-bisphosphate, and 3-phosphoglycerate can be reliably recovered in the subcellular fractions isolated from protoplasts, and measured by enzymic substrate analysis.  相似文献   

2.
Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates(J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125-3128).We have investigated this hypothesis in detail using tobacco (Nicotiana tabacum) mesophyll protoplasts isolated from plants transformed with the rolB gene under the control of its own promoter (BBGUS 6 clone) or the cauliflower mosaic virus 35S promoter (CaMVBT 3 clone). Protoplasts expressing rolB showed an increased sensitivity to the auxin-induced hyperpolarization of the plasma membrane when triggered with exogenous auxin. Because this phenotypical trait was homogeneously displayed over the entire population, protoplasts were judged to be a more reliable test system than the tissue fragments used in previous studies to monitor rolB gene effects on cellular auxin levels. Accumulation of free 1-[3H]-naphthaleneacetic acid (NAA) was equivalent in CaMVBT 3, BBGUS 6, and wild-type protoplasts, Naphthyl-[beta]-glucose ester, the major NAA metabolite in protoplasts, reached similar levels in CaMVBT 3 protoplasts, reached similar levels in CaMVBT 3 and normal protoplasts and was hydrolyzed at the same rate in BBGUS 6 and normal protoplasts. Furthermore, NAA accumulation and metabolism in BBGUS 6 protoplasts were independent of the rolB gene expression level. Essentially similar results were obtained with indoleacetic acid. Thus, it was concluded that the rolB-dependent behavior of transgenic tobacco protoplasts is not a consequence of modifying the intracellular auxin concentration but likely results from changes in the auxin perception pathway.  相似文献   

3.
In root nodules of leguminous plants, such as Vicia faba L., N2 is fixed by rhizobial bacteroids within infected cells. These cells are located in the centre of the nodule, whereas the vascular system serving import and export of solutes is located in the periphery. Within the infected central tissue, metabolites may travel symplastically by using bands of interconnected uninfected cells. Structural evidence, however, speaks against symplastic movement between infected cells themselves. The present work examined the possibility of an apoplastic step in amino acid export from infected cells. Incubation experiments with dissected central tissue demonstrated the release of amino compounds by infected cells. The predominant compound released was asparagine, which is also the major amino acid in xylem sap of legumes forming indeterminate nodules. During incubation of central infected tissue, medium acidification by plasma membrane H+-ATPase quickly turned into slight alkalization, probably caused by the released amino acids. In vivo, this process would lead to an increased apoplastic pH with consequences for processes relying on the proton gradient across the plasma membrane. Uptake of 14C-labelled amino acids by uninfected and infected cells was studied using protoplasts isolated from the central nodule tissue. Uninfected protoplasts accumulated amino acids with low specificity in a ΔpH-dependent, bi-phasic manner, whereas infected protoplasts did not absorb amino acids from the medium. This indicates that uninfected protoplasts not only function in metabolite transport, but also in collection of amino acids from the apoplast. Taken together, both experimental approaches demonstrate the possibility of an apoplastic export step for amino acids in the central tissue of indeterminate legume nodules.  相似文献   

4.
R. Hampp 《Planta》1980,150(4):291-298
Purified intact protoplasts were isolated from etiolated and greening leaves of Avena sativa. They were ruptured by forcing them through a 20-m aperture nylon net and immediately thereafter fractionated into a pure pellet of plastids (well above 70% of total plastids), a layer of mitochondria only slightly contaminated by other cellular constituents (about 50% of total mitochondria), and a cytoplasmic supernatant. This was achieved within 60 s by an integrated method of homogenation of protoplasts and centrifugal filtration of the homogenate on a gradient of silicone oils, contained together with the nylon net in 450 l microtubes, and verified by comparing the levels of activity of specific markers within the three fractions obtained. With appropriate modifications to immediately quench metabolic reactions within the fractions, this method allows the determination of metabolite levels within plastids, mitochondria, and the cytoplasmic compartment of intact protoplasts. The applicability of this technique is demonstrated by the determination of ATP in the plastids, mitochondria, and the cytoplasm of protoplasts obtained from etiolated and greening primary leaves of Avena. The levels of ATP, corrected for contamination of the fractions by each other, exhibit a pronounced transient increase during greening, especially within the cytoplasm.Abbreviations BSA bovine serum albumin - Cyt c cytochrome c - EDTA ethylenediamine tetraacetic acid - HEPES N-2-hydroxyethyl-piperazine-N-2-ethane sulphonic acid - MES 2(N-morpholino) ethane sulphonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenol pyruvic acid - RuBP ribulose-1.5-bis-phosphate  相似文献   

5.
A comparative study of metabolite levels in plant leaf material in the dark   总被引:6,自引:0,他引:6  
Metabolite levels have been compared in the dark and during photosynthesis in leaves and protoplasts from spinach, pea, wheat and barley. In protoplasts the subcellular distribution was also studied. The levels of triose phosphates and sugar bisphosphates were high in the light and low in the dark. The hexose phosphates and 3-phosphoglycerate levels in the dark were very variable depending on the plant material. In most conditions, hexose phosphates and triose phosphates were mainly in the extrachloroplast compartment, while 3-phosphoglycerate and the sugar bisphosphates were mainly in the chloroplast compartment. Leaves always had a very low triose phosphate: 3-phosphoglycerate ratio in the dark, but in protoplasts this ratio was higher. Detailed studies with spinach showed that metabolite levels were very dependent on the availability of carbohydrate in the leaf, particularly starch. Starch mobilisation is not controlled just by the availability of inorganic phosphate and accumulation of phosphorylated intermediates. Hydrolysis of starch may provide precursors for sucrose synthesis while phosphorolysis leads to provision of substrates for respiration. Starch breakdown generates high enough levels of hexose phosphate to support substantial rates of sucrose synthesis in the dark. Respiration is not greatly increased when metabolite levels are high during starch mobilisation. Higher levels of metabolites shorten the length of the induction phase of photosynthesis.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - Fru2,6bisP fructose-2,6-bisphosphate - NMR nuclear magnetic resonance - PGA 3-phosphoglyceric acid - Pi inorganic phosphate - RuBP ribulose-1,5-bisphosphate - UDPGlc uridine-5-diphosphate glucose  相似文献   

6.
A technique is presented for measuring the in vivo metabolite levels in the chloroplast stroma, the cytosol, and the mitochondrial matrix of wheat (Triticum aestivum, var `Timmo') leaf protoplasts, in which membrane filtration is used to prepare fractions enriched in the different subcellular fractions within 0.1 seconds after disruption of the protoplasts. By closing a syringe, protoplasts are forced through a net and disrupted, diluting the cytosol into the medium and also releasing intact chloroplasts and mitochondria which can then be immediately removed on membrane filters placed behind the nylon net. By varying the membrane filters, different filtrates are obtained corresponding to (a) mainly cytosol, or (b) cytosol and mitochondria with only low levels of chloroplasts; alternatively, (c) the entire protoplast contents are obtained by omitting the filters. The filtrates are immediately split, half flowing into HClO4 where they are immediately quenched for subsequent metabolite analyses; the other half flows into detergent and is used to monitor the exact distribution of marker enzymes in each individual fractionation. Using the measured distributions of metabolite and of marker enzymes in the three filtrates, the subcellular distribution of the metabolite can be algebraically calculated. The method is presented using ATP as an example.

The quench time (0.1 second) made possible by membrane filtration is considerably faster than has been possible in the previously developed techniques using silicone oil centrifugation for chloroplasts (1 second) or mitochondria (1 minute). This rapid quench makes it possible to investigate subcellular pools which have a rapid turnover, like the adenine nucleotides.

  相似文献   

7.
A method has been developed to transform plasmid deoxyribonucleic acid into protoplasts of the insect pathogen Bacillus thuringiensis. Protoplasts were formed by treatment of cells with lysozyme. The efficiency of formation of protoplasts was affected by the strain, the media, and the cell density. Deoxyribonucleic acid uptake was induced by polyethylene glycol. Deoxyribonucleic acid from the Staphylococcus aureus plasmid pC194 was used for transformation. Although this plasmid could not be isolated as a stable extrachromosomal element, its chloramphenicol resistance was transferred to the recipient protoplasts. This was confirmed by assay for the enzyme chloramphenicol acetyltransferase, which confers resistance to chloramphenicol. This suggested that pC194 acts as an insertion element in B. thuringiensis.  相似文献   

8.
When auxin was omitted during either the preparation or the culture of tobacco mesophyll protoplasts, as well as during both periods, synthesis of β-glucanase was spontaneously induced. In contrast, when protoplasts were prepared and cultured in the presence of 16 micromolar 1-naphthaleneacetic acid (optimal concentration for protoplast division), the expression of β-glucanase was maintained close to the minimal level observed in tobacco leaves. This inhibitory effect was only promoted by active auxins (1-naphthaleneacetic acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, and 3-indoleacetic acid) but not by inactive auxin analogs. Tobacco protoplasts responded to exogenous elicitors from the cell wall of Phytophthora megasperma glycinea (Pmg) by accumulating β-glucanase in the presence of 16 micromolar 1-naphthaleneacetic acid. At higher auxin concentrations, the elicitor-induced β-glucanase synthesis was inhibited. Naphthaleneacetic acid concentration (3 × 10−5 molar) required to inhibit by 50% the expression of this defense reaction triggered by a near-optimal elicitor concentration was about 100 times higher than that sufficient to inhibit by 50% the spontaneous expression in nonelicited protoplasts. This is the first demonstration of an auxin-fungal elicitor interaction in the control of a defined defense reaction. The above observations were extended to soybean cell protoplasts. The Pmg elicitor-induced stimulation of the synthesis of pathogenesis related P17 polypeptides and of a 39-kilodalton peptide immunologically related to tobacco β-glucanase was only observed when the spontaneous accumulation of these proteins was inhibited in auxin-treated protoplasts.  相似文献   

9.
Stable and metabolically active protoplasts were prepared from the unicellular cyanophyte, Anacystis nidulans, by enzymatic digestion of the cell wall with 0.1% lysozyme. The yield of protoplasts from intact algal cells was approx. 50%. Incorporation of L-[U-14C]leucine into cold trichloroacetic acid-insoluble material from protoplasts preparations was linear for 1.5 h and continued for an additional 2.5 h. Incorporation of radiolabeled leucine into hot trichloroacetic acid-insoluble material from protoplast preparations demonstrated protein synthesis in protoplasts in vitro. Phycocyanin is the principal phycobiliprotein and allophycocyanin is a minor phycobiliprotein in A. nidulans cells. The light-absorbing chromophore of both of these phycobiliproteins is the linear tetrapyrrole (bile pigment), phycocyanobilin. Radiolabeled phycocyanin and allophycocyanin were isolated from protoplast preparations which had been incubated with L-[U-14]leucine or delta-amino[4-14C] levulinic acid (a precursor of phycocyanobilin). The radio-labeled phycobiliproteins were purified by ammonium sulfate fractionation and ion-exchange chromatography on brushite columns. The specific radioactivity of phycocyanin and allophycocyanin in brushite column eluates (protoplasts incubated with radiolabeled leucine) was 106 000 and 82 000 dpm/mg, respectively. The specific radioactivity of phycocyanin and allophycocyanin in brushite column eluates (protoplasts incubated with radiolabeled delta-aminolevulinic acid) was 33 000 and 38 000 dpm/mg, respectively. Phycobiliproteins from protoplasts incubated with radiolabeled leucine were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 25% of the incorporated radioactivity in protoplast lysates and approx. 60% of the incorporated radioactivity in protoplast lysates and approx. 60% of the incorporated ratioactivity in phycocyanin and allophycocyanin (in brushite column eluates) comigrated with the subunits of these phycobiliproteins on sodium dodecyl sulfate-polyacrylamide gels. Chromic acid degradation of phycobiliproteins from protoplast preparations incubated with delta-amino[4-14C] levulinic acid yielded radiolabeled imides which were derived from the phycocyanobilin chromophore. Imides from radiolabeled phycobiliproteins isolated from protoplast preparations incubated with L-[U-14C]leucine did not contain radioactivity. These results show that both the apoprotein and tetrapyrrolic moieties of phycocyanin and allophycocyanin were synthesized in A. nidulans protoplasts in vitro.  相似文献   

10.
A simple method, using mixtures of commercially available pectinasesand cellulases, is described for the isolation of very largenumbers of tobacco leaf protoplasts. These protoplasts havebeen cultured for several days in suitable media. Pinocytosis was shown to occur when protoplasts were incubatedwith ferritin. These isolated protoplasts respond dramatically,by progressively bursting, when incubated with growth substancesat physiological levels. There was no detectable response togrowth substances such as indol-3yl-acetic acid when the anti-auxintranscinnamic acid was also present, indicating that these responsesare specifically auxin-induced.  相似文献   

11.
The relative content of antioxidants in the mycelium of Trichoderma reesei 6/16 obtained by propagation of fungal protoplasts was shown to decrease (as compared to the initial culture taken for preparation of protoplasts) and restored only in the second generation of regenerated mycelium. In this respect, the effects of various antioxidants (beta-carotene, ascorbic acid, alpha-tocopherol, and ionol) on the frequency of regeneration of T. reesei 6/16 protoplasts were studied. beta-Carotene increased the viability of fungal protoplasts to the greatest extent. The effect of ascorbic acid depended on the presence of Fe ions. Ionol did not cause any measurable protective effect.  相似文献   

12.
13.
Summary Protoplasts isolated from celery cell suspension cultures, were mixed with fungal protoplasts, from either the saprophytic speciesAspergillus nidulans or the pathogenic speciesFusarium oxysporum. The incubation of protoplast mixtures with PEG caused close adhesion between plant and fungal protoplasts. Subsequent dilution of PEG resulted in the uptake of protoplasts from either fungal species into the plant protoplast cytoplasm. A range of PEG concentrations, incubation times and dilution rates were tested to maximise adhesion and uptake frequencies. Identification of uptake was achieved either by fluorescent staining of nuclei or by electron-microscopy. A maximum of 10% celery protoplasts had taken upA. nidulans protoplasts after PEG treatment. Fungal protoplasts were taken up into celery protoplast cytoplasm by endocytosis, and were maintained within vesicles; two bounding membranes were observed by electron microscopy. Plant protoplast viability was determined during prolonged incubation following fungal protoplast uptake. The presence ofA. nidulans protoplasts tended to maintain celery protoplast viability and although some morphological disintegration occurred intact celery protoplasts remained for at least 92 h after uptake. The uptake ofF. oxysporum protoplasts markedly depressed celery protoplast viability after 24 h incubation and greater celery protoplast disintegration occurred.Abbreviations PEG Polyethylene glycol - DAPI 4,6-diaminido-2-phenylindole - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

14.
15.
A method is described in which cells of Streptococcus mutans BHT can be converted to spherical, osmotically fragile protoplasts. Exponential-phase cells were suspended in a solution containing 0.5 M melezitose, and their cell walls were hydrolyzed with mutanolysin (M-1 enzyme). When the resultant protoplasts were incubated in a chemically defined growth medium containing 0.5 M NH4Cl, the protoplast suspensions increased in turbidity, protein, ribonucleic acid, and deoxyribonucleic acid in a balanced fashion. In the presence of benzylpenicillin (5 microgram/ml), balanced growth of protoplasts was indistinguishable from untreated controls. This absence of inhibition of protoplast growth in the presence of benzylpenicillin was apparently not due to inactivation of the antibiotic. When exponential-phase cells of S. mutans BHT were first exposed to 5 microgram of benzyl-penicillin per ml for 1 h and then converted to protoplasts, these protoplasts were also able to grow in chemically defined, osmotically stabilized medium. The ability of wall-free protoplasts to grow and to synthesize ribonucleic acid and protein in the presence of a relatively high concentration of benzylpenicillin contrasts with the previously reported rapid inhibition of ribonucleic acid and protein synthesis in intact streptococci. These data suggest that this secondary inhibition of ribonucleic acid and protein synthesis in whole cells is due to factors involved with the continued assembly of an intact, insoluble cell wall rather than with earlier stages of peptidoglycan synthesis.  相似文献   

16.
Treatment of the anaerobic, Gram negative general fatty acid auxotroph Butyrivibrio S2 with lysozyme in low molarity buffers resulted in the formation of protoplasts, some of which retained the original rod-shaped morphology of the organism. The protoplasts were stabilised by the presence of Mg2+ ions. Most of the phospholipase A and C and galactolipase activity of the cells was retained by the protoplasts. Electron microscopy and chemical markers were used to monitor the separation of plasma membrane and cell wall fragments by density gradient centrifugation after osmotic lysis of protoplasts. Phospholipase and galactolipase activities were demonstrated in a subcellular fraction which contained only fragments of plasma membrane.  相似文献   

17.
Igamberdiev AU  Shen T  Gardeström P 《Planta》2006,224(1):196-204
Mitochondrial contribution to photosynthetic metabolism during the transition from low light (25–100 μmol quanta m−2 s−1, limiting photosynthesis) to high light (500 μmol quanta m−2 s−1, saturating photosynthesis) was investigated in protoplasts from barley (Hordeum vulgare) leaves. After the light shift, photosynthetic oxygen evolution rate increased rapidly during the first 30–40 s and then declined up to 60–70 s after which the rate increased to a new steady-state after 80–110 s. Rapid fractionation of protoplasts was used to follow changes in sub-cellular distribution of key metabolites during the light shift and the activation state of chloroplastic NADP-dependent malate dehydrogenase (EC 1.1.1.82) was measured. Although oligomycin (an inhibitor of the mitochondrial ATP synthase) affected the metabolite content of protoplasts following the light shift, the first oxygen burst was not affected. However, the transition to the new steady-state was delayed. Rotenone (an inhibitor of mitochondrial complex I) had similar, but less pronounced effect as oligomycin. From the analysis of metabolite content and sub-cellular distribution we suggest that the decrease in oxygen evolution following the first oxygen burst is due to phosphate limitation in the chloroplast stroma. For the recovery the control protoplasts can utilize ATP supplied by mitochondrial oxidative phosphorylation to quickly overcome the limitation in stromal phosphate and to increase the content of Calvin cycle metabolites. The oligomycin-treated protoplasts were deficient in cytosolic ATP and thereby unable to support Calvin cycle operation. This resulted in a delayed capacity to adjust to a sudden increase in light intensity.  相似文献   

18.
A continuous micropropagation was established from protoplasts of thegreen alga Enteromorpha intestinalis. The effects of two differentcrude enzymes and the osmolarity at different concentrations of the enzymesolution on algal protoplast yields were tested. The optimal enzymecomposition for cell wall digestion and protoplast viability was 2%cellulase R 10 Onozuka and 2% Aplysie with 0.5 m mannitol. Largenumbers of Enteromorpha protoplasts were released (10.0 × 106protoplasts from 1 g fresh thalli) and settled on a rangeof substrata. Regeneration of the protoplasts followed the normal patternfor this species. Conditions for pure cultures and efficient systems offloating supports with nets were determined to optimise the product qualityof plantlets of Enteromorpha. A promising storage process has beendeveloped which involves including protoplasts in beads of alginic acid gel.Plants regenerated from protoplasts may also be used as seedstock tofacilitate propagation for macroalgal culture.  相似文献   

19.
何若天  罗科   《广西植物》1982,(2):81-87
甘蔗幼叶原生质体酶解释离期间呼吸速率逐渐降低。通气良好者原生质体产量高,但各处理原生质体存活率差异不大。以无机盐为稳压剂者,苹果酸、α-酮戊二酸、丙酮酸钠、琥珀酸钠、柠檬酸钠等呼吸中间产物均能提高原生质体产量,尤以琥珀酸钠和丙酮酸钠效果最好。而以糖醇为稳压剂者,苹果酸、α-酮戊二酸、丙酮酸钠和琥珀酸钠等有促进作用,柠檬酸钠却有严重抑制效应,产物几全部为具壁细胞。 呼吸抑制剂如碘乙酸、氟化钠、丙二酸、叠氮化钠和2,4-二硝基酚等对原生质体产量和存活率均有抑制作用。随抑制剂浓度增加,呼吸受抑制越甚,原生质体产量和存活率的降低也越甚。琥珀酸能消除丙二酸对呼吸的抑制,并减轻丙二酸对原生质体释离的不利影响。 用酶法从具壁细胞中分离原生质体是既受细胞的代谢水平所调控,又受组成酶液的稳压剂的组分所影响。其原因需进一步研究。  相似文献   

20.
Structural analysis of the cell walls regenerated by carrot protoplasts   总被引:1,自引:0,他引:1  
A procedure was developed to isolate protoplasts rapidly from carrot (Daucus carota L. cv. Danvers) cells in liquid culture. High purity of cell-wall-degrading enzymes and ease of isolation each contributed to maintenance of viability and initiation of regeneration of the cell wall by a great majority of the protoplasts. We used this system to re-evaluate the chemical structure and physical properties of the incipient cell wall. Contrary to other reports, callose, a (1 3)-d-glucan whose synthesis is associated with wounding, was not a component of the incipient wall of carrot protoplasts. Intentional wounding by rapid shaking or treatment with dimethyl sulfoxide initiated synthesis of callose, detected both by Aniline blue and Cellufluor fluorescence of dying cells and by an increase in (1 3)-linked glucan quantified in methylation analyses. Linkage analyses by gas-liquid chromatography of partially methylated alditol-acetate derivatives of polysaccharides of the incipient wall of protoplasts and various fractions of the cell walls of parent cells showed that protoplasts quickly initiated synthesis of the same pectic and hemicellulosic polymers as normal cells, but acid-resistant cellulose was formed slowly. Complete formation of the wall required 3 d in culture, and at least 5 d were required before the wall could withstand turgor. Pectic substances synthesized by protoplasts were less anionic than those of parent cells, and became more highly charged during wall regeneration. We propose that de-esterification of the carboxyl groups of pectin uronic-acid units permits formation of a gel that envelops the protoplast, and the rigid cellulose-hemicellulose frame-work forms along with this gel matrix.Abbreviations DEAE Diethylaminoethyl - DMSO dimethyl sulfoxide - ECP extracellular polymers - EDTA ethylenediaminetetraacetic acid - HGA nomogalacturonan - RG rhamnogalacturonan - Tes N-tris(hydroxymethyl)methyl-2-amino-ethanesufonic acid - TFA trifluoroacetic acid Journal paper No. 11,776 of the Purdue University Agriculture Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号