首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Iodinated native bovine parathyroid hormone (bPTH(1-84)) was separated from uniodinated hormone by reversed-phase liquid chromatography techniques after lactoperoxidase labeling. Analysis of iodinated residues after enzymatic digestion indicated that the major labeled product was largely monoiodinated on the sole tyrosine residue. This material retained full bioactivity in an in vitro renal adenylate cyclase assay. Binding of 125I-bPTH(1-84) to rabbit renal membranes at 4 degrees C was proportional to membrane protein concentration and was saturable and dissociable. Radioligand binding was inhibited by concentrations of unlabeled bPTH(1-84) required to stimulate adenylate cyclase in the same membrane preparation but was not inhibited by non-PTH peptides other than adrenocorticotropin at high concentrations (greater than 10 microM). Synthetic NH2-terminal analogues of bPTH(1-84) all elicited approximately equivalent inhibition of radioligand binding which was, however, less potent than unlabeled bPTH(1-84), suggesting a role for the carboxyl region of the molecule in the interaction of bPTH(1-84) with its receptor. Activity of the NH2-terminal agonists was similar to bPTH(1-84) in stimulating adenylate cyclase. Although substitution in sequence position one, of serine in human PTH(1-34) for alanine in bPTH(1-34), reduced activity in the adenylate cyclase assay, inhibition of 125I-bPTH(1-84) binding by both peptides and by an analogue of bPTH(3-34) was equivalent, consistent with a minimal contribution of the first 2 residues for receptor binding of the NH2-terminal region of PTH. The results illustrate the utility of the radiolabeled preparation of native bPTH we have developed and emphasize the importance of probing the PTH receptor with an intact hormone to maximize information concerning the mechanism of PTH action.  相似文献   

2.
Hoare SR  Usdin TB 《Peptides》2002,23(5):989-998
Parathyroid hormone 1 (PTH1) receptor antagonists might be of benefit in hypercalcemia of malignancy (HHM) and hyperparathyroidism. We previously identified bovine tuberoinfundibular peptide (7-39) (bTIP(7-39)) as a high-affinity PTH1 receptor antagonist. Mouse TIP(7-39) is an antagonist (rPTH1 K(B)=44 nM, rPTH2=940 nM) that is more potent than other known PTH1 receptor antagonists: bTIP(7-39) (210 nM), PTH-related protein (PTHrP)(7-34) (640 nM), and bPTH(7-34) (>3000 nM). Plasma proteases slowly (t(1/2)=81 min) inactivated [125I] mTIP(7-39). Intravenous plasma [125I]mTIP(7-39) was bi-phasically cleared (radioactivity t(1/2)=2.9 min (70%) and 120 min (30%), binding activity t(1/2)=3.6 min (92%), and t(1/2)=21 min (8%)). Loss of unlabeled mTIP(7-39) (250 microg/kg i.v.) receptor binding was similar. mTIP(7-39)'s high-affinity should facilitate animal evaluation of effects of PTH1 receptor antagonism.  相似文献   

3.
Position 18 in a parathyroid hormone (PTH) antagonist, [Nle8,18,Tyr34]bPTH(7-34)NH2 (ii), was shown to tolerate substitutions by a range of amino acids with retention of inhibitory activity. The effects of hydrophobic substitutions at this position as a means of enhancing binding interactions with the receptor were evaluated. Substitution of Nle at position 18 with either D-Ala, D-Trp, or L-Trp in analog ii or with Trp (D or L) in the recently reported, highly potent antagonist, [Nle8,18,D-Trp12,Tyr34]bPTH(7-34)NH2 (in vitro activities; Kb = 15 nM and Ki = 125 nM), was performed. In terms of activity on renal receptors, one antagonist, [Nle8,D-Trp12,18,Tyr34]bPTH(7-34)NH2, is the most active in vitro PTH antagonist yet reported (Kb = 4 nM; Ki = 30 nM). The rationale for design of this antagonist and the conclusions regarding PTH-receptor interactions are discussed.  相似文献   

4.
We demonstrated that 125I-labeled human parathyroid hormone (1-34;8,18-Nle,34-Tyr)[[125I]hPTH(1-34)] bound specifically to hemopoietic blast cells supported by granulocyte-macrophage colony-stimulating factor. Half-maximal inhibition of binding was achieved at concentrations of unlabeled hPTH(1-34) of about 5 x 10(-9)M. Insulin and hPTH(39-68) did not compete for PTH binding sites. Specific binding of hPTH(1-34) was detected in neither macrophages nor multinucleated cells (MNC's). Furthermore, treatment of hemopoietic blast cells with hPTH(1-34) stimulated MNC formation, and the range of concentrations (10(-10)-10(-8)M) over which hPTH(1-34) caused these effects was similar to that which inhibited the binding of [125I]hPTH(1-34). These findings suggest the presence of a PTH receptor on osteoclast precursors and the direct effect of PTH on them, resulting in osteoclast-mediated bone resorption.  相似文献   

5.
Covalent labeling of the canine renal parathyroid hormone receptor with [125I]bPTH(1-34) reveals several major binding components that display characteristics consistent with a physiologically relevant adenylate cyclase linked receptor. Through the use of the specific glycosidases neuraminidase and endoglycosidase F and affinity chromatography on lectin-agarose gels, we show here that the receptor is a glycoprotein that contains several complex N-linked carbohydrate chains consisting of terminal sialic acid and penultimate galactose in a beta 1,4 linkage to N-acetyl-D-glucosamine. No high mannose chains or O-linked glycans appear to be present. The peptide molecular weight of the deglycosylated labeled receptor is 62,000 [or 58,000 if the mass of bPTH(1-34) is excluded]. The binding of [125I]bPTH(1-34) to the receptor is inhibited in a dose-dependent fashion by wheat-germ agglutinin, but not by either succinylated wheat-germ agglutinin or Ricinus communis lectin, suggesting that terminal sialic acid may be involved in agonist binding. A combination of lectin affinity chromatography and immunoaffinity chromatography affords a 200-fold purification of the covalently labeled receptor.  相似文献   

6.
A tumor-derived protein with a spectrum of biologic activities remarkably similar to that of parathyroid hormone (PTH) has recently been purified and its sequence deduced from cloned cDNA. This PTH-like protein (PLP) has substantial sequence homology with PTH only in the amino-terminal 1-13 region and shows little similarity to other regions of PTH thought to be important for binding to receptors. In the present study, we compared the actions of two synthetic PLP peptides, PLP-(1-34)amide and [Tyr36]PLP-(1-36)amide, with those of bovine parathyroid hormone (bPTH)-(1-34) on receptors and adenylate cyclase in bone cells and in renal membranes. Synthetic PLP peptides were potent activators of adenylate cyclase in canine renal membranes (EC50 = 3.0 nM) and in UMR-106 osteosarcoma cells (EC50 = 0.05 nM). Bovine PTH-(1-34) was 6-fold more potent than the PLP peptides in renal membranes, but was 2-fold less potent in UMR-106 cells. A competitive PTH receptor antagonist, [Tyr34]bPTH-(7-34)amide, rapidly and fully inhibited adenylate cyclase stimulation by the PLP peptides as well as bPTH-(1-34). Competitive binding experiments with 125I-labeled PLP peptides revealed the presence of high affinity PLP receptors in UMR-106 cells IC50 = 3-4 nM) and in renal membranes (IC50 = 0.3 nM). There was no evidence of heterogeneity of PLP receptors. Bovine PTH-(1-34) was equipotent with the PLP peptides in binding to PLP receptors. Likewise, PLP peptides and bPTH-(1-34) were equipotent in competing with 125I-bPTH-(1-34) for binding to PTH receptors in renal membranes. Photoaffinity cross-linking experiments revealed that PTH and PLP peptides both interact with a major 85-kDa and minor 55- and 130-kDa components of canine renal membranes. We conclude that PTH and PLP activate adenylate cyclase by binding to common receptors in bone and kidney. The results further imply that subtle differences exist between PTH and PLP peptides in their ability to induce receptor-adenylate cyclase coupling.  相似文献   

7.
Synthetic peptides corresponding to the amino-terminal region of the human parathyroid hormone-related peptide (hPTHrp) were used to characterize the interaction of hPTHrp with parathyroid hormone (PTH) receptors in clonal rat osteosarcoma cells (ROS 17/2.8). Both hPTHrp-(1-34) and [Tyr40]hPTHrp-(1-40) showed full agonist activity in stimulating cyclic AMP accumulation in ROS cells; human PTHrp-(1-34) was approximately 2.5-fold as potent as hPTH-(1-34). Both [Tyr-40]hPTHrp-(3-40) and hPTH-(3-34) inhibited the cyclic AMP increase induced by either hPTHrp or PTH with parallel dose-inhibition curves. Binding to intact ROS cells of a 125I-labeled [Tyr40]hPTHrp-(1-40) (125I-[Tyr40]hPTHrp-(1-40)) which retains full biological activity was time- and temperature-dependent and reversible. Binding of 125I-[Tyr40]hPTHrp-(1-40) and 125I-labeled [Nle8, Nle18, Tyr34]bovine PTH-(1-34)NH2 to ROS cells was competed for, to the same extent and with the comparable potency, by either unlabeled hPTHrp or PTH peptides. The binding capacity and affinity of receptors in ROS cells were strikingly similar for hPTHrp and PTH. Affinity cross-linking with either radioligand resulted in high affinity, specific labeling of an apparently identical macromolecule centering at Mr = 80,000, which was detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in both reducing and nonreducing conditions. The data indicate that hPTHrp and PTH, their amino-terminal fragments at least, interact with the identical receptors with regard to affinity, capacity, specificity, and physicochemical characteristics in osteoblastic ROS 17/2.8 cells.  相似文献   

8.
Parathyroid hormone binding to cultured avian osteoclasts.   总被引:3,自引:0,他引:3  
Parathyroid hormone (PTH) increases serum calcium concentration via a controversial cellular mechanism. We investigated whether PTH binds avian osteoclasts. Isolated hypocalcaemic hen osteoclasts were incubated with [125I]--bovine PTH (1-84). Specific binding of the hormone to the cells, which reached the equilibrium within 60 min, was observed. Half maximal binding was reached by 10 min. Binding was competitively inhibited by increasing doses of unlabeled PTH, and was about 55% displaced by adding, at the equilibrium, 10(-6) M unlabeled PTH. Autoradiography demonstrated specific label on the osteoclast. The cellular mechanism activated by the hormone remains to be elucidated.  相似文献   

9.
Monoclonal antibodies have been produced against primary bone cells obtained from the collagenase digestion of mouse cranial bone. Antibodies were selected on the basis of their immunoglobulin class and those which were identified as IgG were further screened for their ability to inhibit cAMP accumulation in response to sub-maximal doses of the 1-34 amino-terminal peptide of bovine parathyroid hormone, bPTH(1-34). Nine hybridoma clones were subsequently characterized as inhibitory with respect to parathyroid hormone (PTH) responses in intact mouse cranial bone and which also identified a variety of membrane components from detergent extracts of surface-labeled primary bone cells. Five of these antibodies immunoprecipitated a membrane component with Mr of 80 000 that appeared to be a major component of the extract susceptible to surface-labeling with 125I. All nine monoclonal antibodies were shown to bind to a suspended-cell preparation of primary bone cells with 2-3 orders of magnitude greater binding than that of control antibodies. Using this assay, one clone, designated 3G12 IgG, was observed to exhibit desensitization effects at the binding level with a time course and dose dependency for PTH pre-incubation that was similar to the establishment of the refractory state in other systems. In addition, the desensitization effect occurred at 37 degrees C but not at 4 degrees C. This antibody was shown to bind saturably to both intact mouse cranial bone and primary bone cells with an apparent affinity constant (Ka) in the range of 10(9) M. Inhibition of bone cAMP accumulation in response to 2.5 nM bPTH(1-34) was directly correlated to the binding of 3G12 IgG to intact mouse calvariae. A maximum inhibition of approximately 85% was observed. 3G12 IgG immunoprecipitated a single membrane component, Mr 150 000, from NP-40 detergent extracts of 125I-labeled primary mouse bone cells. The molecular mass of this component was also 150 000 daltons when run on polyacrylamide gel slabs under non-reducing conditions. Control and PTH-pre-treated bone cells were surface-labeled, detergent-solubilized and immunoprecipitated with 3G12 IgG in order to investigate further the desensitization effect at the molecular level. Incubation of bone cells with 1 microgram/ml bPTH(1-34) for 45 min at 37 degrees C caused an increased susceptibility to surface-labeling with 125I that was approximately three-fold higher in specific activity than that of control cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
We used the osteogenic sarcoma cell line, UMR-106-01, to determine whether the rise in free cytosolic Ca2+ concentration ([Ca2+]i) and cellular cAMP following PTH stimulation are able to be regulated independently. For this purpose, we compared the effect of a PTH antagonist, stimulation of protein kinase C, augmentation by prostaglandins, and the time course of desensitization of the two cellular responses. Two x 10(-7) M of the PTH antagonist 8,18Nle 34Tyr-bPTH(3-34) amide ([Nle,Tyr]bPTH(3-34)A) was required to inhibit 10(-9) M bPTH(1-34)-stimulated cAMP generation by 50%. 10(-7) M bPTH(1-34) completely overcame the inhibition induced by 10(-6) M [Nle,Tyr]bPTH(3-34)A. Only 7 x 10(-8) M and 2.7 x 10(-7) M [Nle,Tyr]bPTH(3-34)A were required to half maximally inhibit the [Ca2+]i increase evoked by 3 x 10(-8) and 10(-7) M bPTH(1-34), respectively. In addition, dissociation between [Ca2+]i and cAMP signals was observed when modulation by protein kinase C and prostaglandins was tested. Preincubation of the cells with 10 nM TPA for 5 minutes markedly inhibited the PTH-evoked [Ca2+]i increase. Short incubation with PGF2 alpha augmented the PTH-evoked [Ca2+]i increase. Similar pretreatments had no effect on the PTH-stimulated cAMP increase. Finally, preincubation with 1.5 x 10(-9) M bPTH(1-34) for 20 minutes almost completely blocked the effect of 10(-7) M bPTH(1-34) on [Ca2+]i, while preincubation with 5 x 10(-9) M bPTH(1-34) for 4 hours was required to inhibit the effect of 10(-8) M bPTH(1-34) on cAMP production by 50%. The differences in the regulation of the two PTH-stimulated cellular signaling systems, in particular, the response to antagonists and the time course of desensitization, could be at the level of the PTH receptor(s) or at a postreceptor domain.  相似文献   

11.
Isolated intact, beating hearts were perfused with HPLC-pure [125]-IGF-I (1 ng/ml) alone or [125]-IGF-I (1 ng/ml) plus varying concentrations of unlabeled IGF-I (10-3,000 ng/ml) or unlabeled insulin (1,000-100,000 ng/ml). After 1 min of perfusion with peptides, the hearts were rapidly fixed, sectioned and analyzed for radioautographic [125I] grain counts. Greater than 90% of [125I] grains were shown to represent intact [125I]-IGF. Maximal grain counts over capillaries occurred after perfusion with [125I]-IGF-I alone and decreased in a dose-dependent manner when unlabeled IGF-I was coperfused. Coperfusion of [125I]-IGF-I with unlabeled insulin also decreased 125I grains over capillaries but less potently than unlabeled IGF-I. EM radioautography demonstrated that [125I]-IGF-I grains were localized over capillary endothelial cells. Thus, specific IGF-I receptors are present in the capillary endothelium of the intact heart and have properties similar to IGF-I receptors in cultured capillary endothelial cells.  相似文献   

12.
A photoreactive derivative of a sulfur-free bovine parathyroid hormone (PTH) analogue, [Nle8,N-epsilon-(4-azido-2-nitrophenyl)Lys13,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NAP-NlePTH), was purified from the products of the reaction of [Nle8,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NlePTH) with 4-fluoro-3-nitro-phenylazide and was used to identify binding components of the PTH receptor in clonal rat osteosarcoma cells (ROS 17/2.8). The purified analogue, NAP-NlePTH, is a fully active agonist in three different ROS 17/2.8 cell bioassays: 1) specific binding to saturable PTH receptors; 2) stimulation of cyclic AMP accumulation; and 3) inhibition of cellular alkaline phosphatase activity; this analogue gave dose response curves parallel to and 25-33% as potent as its parent molecule, NlePTH. Radioiodinated NAP-NlePTH (125I-labeled NAP-NlePTH) retained maximal receptor-binding potency. Radioligand saturation studies in intact cells showed that the Kd of PTH receptors for the photoligand was slightly less than that for 125I-labeled NlePTH (2.8 and 0.8 nM, respectively), but that the Bmax was essentially identical for both radioligands (8 fmol/10(5) cells). Photoaffinity labeling of ROS 17/2.8 cells revealed several 125I-labeled macromolecular components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One predominant 125I-labeled band, having an apparent Mr of 80,000 daltons (including Mr = 4,347 ligand; hereafter referred to as the Mr = 80,000 protein), was consistently demonstrated in both reducing and nonreducing conditions. Its labeling was completely inhibited by coincubation with NlePTH (10 nM) at 26-fold molar excess to the photoligand, but not by biologically inactive PTH fragments or unrelated hormone. Labeling of several other macromolecular components persisted in the presence of NlePTH (1 microM). Only the labeling of the Mr = 80,000 protein showed saturation kinetics for photoaffinity labeling; the dose of 125I-labeled NAP-NlePTH (0.8 nM) to half-saturate labeling of the Mr = 80,000 protein was close to the Kd (2.8 nM) of specific binding of the photoligand to receptors in intact ROS 17/2.8 cells. Pretreatment of the cells with NlePTH and dexamethasone led to the predicted proportional decrease or increase, respectively, in labeling of the Mr = 80,000 protein. Our data, using a highly purified photoactive derivative of PTH, having carefully defined chemical and biological properties, show a plasma membrane component of Mr = 80,000 in ROS 17/2.8 cells that possesses the affinity, binding capacity, and physiological characteristics of the PTH receptor.  相似文献   

13.
A radioimmunoassay for bovine parathyroid hormone (bPTH) has been developed. An antibody was raised in a goat against 1-84 b PTH which was directed against the carboxy-terminal part of the molecule (no cross-reactivity with synthetic 1-34 b PTH fragment). 1-84 b PTH was labelled with 125I using the chloramine-T method. The tubes were incubated at 4 degrees C for 6 days in an equilibrium system with 25% protein concentration. Separation was performed using plasma-coated charcoal. Jugular venous plasma PTH levels were shown to be increased in hypocalcemic parturient cows.  相似文献   

14.
Bovine parathyroid hormone (PTH) 1-34 [bPTH(1-34)] and human PTH related protein [hPTHrP(1-34)] stimulated cAMP accumulation in opossum kidney (OK) cells with Km of 5 x 10(-9) M, but inhibition of phosphate uptake was obtained with 17-fold lower Km of 3 x 10(-10) M. Phosphate uptake was partially inhibited with [Nle8.18Tyr34]bPTH(3-34)NH2 without concomitant cAMP stimulation. With hPTHrP(7-34)NH2, cAMP accumulation was increased in parallel to inhibition of phosphate uptake. [D-Trp12Tyr34]bPTH(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 had no agonist activity on cellular cAMP and inhibition of phosphate uptake. bPTH(1-34)-stimulated cAMP accumulation was antagonized by [Nle8.18Tyr34]bPTH(3-34)NH2, [D-Trp12Tyr34]bPTH(7-34)NH2, hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 with Ki of 1.4 x 10(-7), 2 x 10(-7), 4.7 x 10(-7) and 3.7 x 10(-6) M, respectively. But [Nle8.18Tyr34]bPTH(3-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2 reversed the inhibition of phosphate uptake only marginally, and hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 were inactive. With hPTHrP(1-34) the Ki for cAMP accumulation of [Nle8,18Tyr34]bPTH(3-34)NH2 and hPTHrP(7-34)NH2 were 1.9 x 10(-7) and 7.2 x 10(-7) M, and inhibition of phosphate uptake was partially reversed with [Nle8,18Tyr34]bPTH(3-34)NH2, but not with hPTHrP(7-34)NH2. The present results indicate that truncated hPTHrP(7-34)NH2, unlike [Tyr34]hPTH(7-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2, elevates cellular cAMP and inhibits phosphate uptake. bPTH(1-34)- and hPTHrP(1-34)-evoked cAMP accumulation is suppressed by PTH and PTHrP fragments while inhibition of phosphate uptake remains largely unaltered.  相似文献   

15.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

16.
Truncated N-terminal fragments of parathyroid hormone (PTH), [Tyr34]bovine PTH(7-34)NH2, and parathyroid hormone related protein (PTHrP), PTHrP(7-34)NH2, inhibit [Nle8,18,[125I]iodo-Tyr34]-bPTH(1-34)NH2 binding and PTH-stimulated adenylate cyclase in bone and kidney assays. However, the receptor interactions of these peptides are 2-3 orders of magnitude weaker than those of their agonist counterparts. To produce an antagonist with increased receptor-binding affinity but lacking agonist-like properties, structure-function studies were undertaken. Glycine at position 12 (present in all homologues of PTH and in PTHrP), which is predicted in both hormones to participate in a beta-turn, was examined by substituting conformational reporters, such as D- or L-Ala, Pro, and alpha-aminoisobutyric acid (Aib), in both agonist and antagonist analogues. Except for N-substituted amino acids, which substantially diminished potency, substitutions were well tolerated, indicating that this site can accept a wide latitude of modifications. To augment receptor avidity, hydrophobic residues compatible with helical secondary structure were introduced. Incorporation of the nonnatural amino acids D-Trp, D-alpha-naphthylalanine (D-alpha-Nal), or D-beta-Nal into either [Tyr34]bPTH(7-34)NH2 or [Nle8,18,Tyr34]bPTH(7-34)NH2 resulted in antagonists that were about 10-fold more active than their respective 7-34 parent compound. Similarly, [D-Trp12]PTHrP(7-34)NH2 was 6 times more potent than the unsubstituted peptide but retained partial agonistic properties, although markedly reduced, similar to PTHrP(7-34)NH2. The antagonistic potentiating effect was configurationally specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have studied the relaxant effect of bovine parathyroid hormone (bPTH) on helical strips of branches of bovine and human middle cerebral arteries and bovine and porcine basilar arteries. All arteries were studied after contraction with prostaglandin (PG) F2 alpha or KCl. In the case of all arteries contracted with PGF2 alpha, the ED50 of PTH vasorelaxation related to maximal vasorelaxation induced by papaverine ranged from 9 to 14 nM for bPTH-(1-34) and 100 to 220 ng/ml for native bPTH-(1-84). The PTH inhibitor, [Nle8, Nle18, Tyr34]bPTH-(3-34) amide, attenuated the vasorelaxant effect of both bPTH-(1-34) and bPTH-(1-84). The vasorelaxant effects of PTH which we have observed in this study are consistent with the stimulatory effects of PTH on vascular adenylate cyclase which we had previously reported.  相似文献   

18.
Lysine occupies position 13 in the parathyroid hormone (PTH) antagonist, [Nle8,18,Tyr34]bPTH(7-34)NH2. Acylation of the epsilon-amino group in lysine 13 by a hydrophobic moiety is well tolerated in terms of bioactivity: the analog [Nle8,18, D-Trp12,Lys 13 (epsilon-3-phenylpropanoyl),Tyr34]bPTH(7-34)NH2 is equivalent to the parent peptide in its affinity for PTH receptors and its ability to inhibit PTH-stimulated adenylate cyclase in both kidney- and bone-based assays. Truncation of this peptide by deletion of phenylalanyl7 with concomitant removal of the amino-terminal alpha-amino group yielded the analog desamino[Nle8,18,D-Trp12,Lys13 (epsilon-3-phenylpropanoyl),Tyr34]bPTH(8-34)NH2, an antagonist of high potency in vitro (Kb = 4 and 9 nM, Ki = 73 and 3.5 nM in kidney- and bone-based assays, respectively). Also this analog is potentially stable to aminopeptidases present in many biological systems.  相似文献   

19.
We have studied the effect of parathyroid hormone (PTH) on adenylate cyclase of microvessels isolated from rat cerebral cortex. Native bovine (b) PTH-(1–84), the synthetic amino-terminal fragment bPTH-(1–34) and the synthetic analog [Nle8, Nle18, Tyr34]-bPTH- (1–34) amide stimulated adenylate cyclase in a dose-dependent manner with apparent ED50 values of 16 nM, 6.3 nM and 15 nM respectively. The stimulation by bPTH was greatly enhanced by guanosine triphosphate. The PTH antagonist, [Nle8, Nle18, Tyr34]-bPTH-(3–34) amide inhibited the action of bPTH-(1–84) and bPTH-(1–34). In summary, PTH stimulated adenylate cyclase in rat cerebral microvessels in a very similar manner to its stimulation in the renal cortex.  相似文献   

20.
B Dozin  H J Cahnmann  V M Nikodem 《Biochemistry》1985,24(19):5197-5202
Photoaffinity labeling of rat liver nuclear extract with underivatized thyroid hormones was performed after incubation with 1 nM [3',5'-125I]thyroxine ([125I]T4) or [3'-125I]triiodothyronine [( 125I]T3) by irradiation with light above 300 nm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the covalently photolabeled nuclear extract revealed four distinct hormone binding proteins of molecular masses 96, 56, 45, and 35 kilodaltons (kDa), respectively. Distribution of the hormone among these proteins was similar for T4 and T3. The 56- and 45-kDa proteins were the most prominently labeled. The specificity of the photoattachment of thyroid hormones to these nuclear proteins was verified by the irradiation of eight randomly chosen proteins and two proteins known to have thyroid hormone binding sites, human thyroxine binding globulin and bovine serum albumin. Only the latter two were photolabeled with [125I]T4. Competition studies performed by incubating nuclear extracts with [125I]T4 or [125I]T3 in the presence of increasing amounts of the corresponding unlabeled hormone (10-, 100-, and 1000-fold molar excess) demonstrated that (1) photoattachment of labeled T3 or T4 to the 56- and 45-kDa proteins was inhibited by 67-78% and 73-85%, respectively, after incubation with a 1000-fold molar excess of unlabeled hormone, (2) in the presence of lower molar excesses of the corresponding competitor (10- and 100-fold), photoattachment of labeled T3 or T4 to the 56- and 45-kDa receptors was gradually inhibited to a similar extent on both proteins, and (3) the 35- and 96-kDa proteins, although having thyroid hormone binding sites, display lower binding activities since the inhibition of photoattachment of labeled T3 or T4 by a 1000-fold molar excess of unlabeled hormone did not exceed 30-42% and 26-49%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号