首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Those aerobic archaea whose genomes have been sequenced possess a single 4-gene operon that, by sequence comparisons with Bacteria and Eukarya, appears to encode the three component enzymes of a 2-oxoacid dehydrogenase multienzyme complex. However, no catalytic activity of any such complex has ever been detected in the Archaea. In the current paper, we have cloned and expressed the first two genes of this operon from the thermophilic archaeon, Thermoplasma acidophilum. We demonstrate that the protein products form an alpha2beta2 hetero-tetramer possessing the decarboxylase catalytic activity characteristic of the first component enzyme of a branched-chain 2-oxoacid dehydrogenase multienzyme complex. This represents the first report of the catalytic function of these putative archaeal multienzyme complexes.  相似文献   

2.
Chaperonins are multi-subunit double-ring complexes that mediate the folding of nascent or denatured proteins. Gene duplication has been a potent force in the evolution of chaperonins in Archaea. Here we show that gene conversion has also been an important factor. We utilized a novel maximum likehood-based phylogenetic method for scanning DNA sequence alignments for regions of anomalous phylogenetic signal, such as those affected by gene conversion. Our results suggest that in crenarchaeotes, where an ancient gene duplication producing alpha and beta subunits took place in the common ancestor of the Pyrodictium, Aeropyrum, Pyrobaculum and Sulfolobus lineages, multiple independent gene conversions have occurred between the alpha and beta genes independently in each of these groups. Significantly, the conversions have repeatedly homogenized the region of the gene encoding the substrate-binding domain. This suggests that while the alpha and beta subunits in crenarchaeotes share only 50-60% overall amino acid sequence identity, they do not possess distinct roles in the binding of substrate. Cryptic gene conversion between distantly related paralogs may be more common than is currently appreciated, and could be a significant factor in slowing the functional differentiation of proteins encoded by duplicate genes long after their duplication.  相似文献   

3.
TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an alpha/beta two-layer sandwich architecture formed by three alpha-helices and five beta-strands following the order beta1-alpha1-beta2-beta3-beta4-beta5-alpha2-alpha3. Searches for structural homologs indicate that the TA0095 structure belongs to the TBP-like fold, constituting a novel superfamily characterized by an additional C-terminal helix. The TA0095 structure provides a fold common to the COG4004 proteins that will obviously belong to this new superfamily. Most hydrophobic residues conserved in the COG4004 proteins are buried in the structure determined herein, thus underlying their importance for structure stability. Considering that the TA0095 surface shows a large positively charged patch with a high degree of residue conservation within the COG4004 domain, the biological function of TA0095 and the rest of COG4004 proteins might occur through binding a negatively charged molecule. Like other TBP-like fold proteins, the COG4004 proteins might be DNA-binding proteins. The fact that TA0095 is shown to interact with large DNA fragments is in favor of this hypothesis, although nonspecific DNA binding cannot be ruled out.  相似文献   

4.
Reher M  Schönheit P 《FEBS letters》2006,580(5):1198-1204
Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.  相似文献   

5.
A cellobiohydrolase (CBH) with a molecular mass of 66 kD was purified from Trichoderma pseudokiningii S-38. Papain digestion produced a 59- to 60-kD core domain with 54% of intact activity on crystalline cellulose and with full activity against soluble substrates. Digestion products also included two small peptides with molecular mass of about 3–4 kD, which are heavily glycosylated and difficult to purify; the mixed peptides displayed the capacity to disorganize the cellulose fiber. The sequencing results indicated that the intact enzyme had a blocked N-terminal and there was a 10-amino-acid sequence in the N-terminal of the core protein of Ser-Gly-Thr-Ala-Val-Thr-Cys-Leu-Ala-Asp. Fluoresence and circular dichroism properties indicated that the core protein has an independent conformation and is conformationally similar to intact enzyme, suggesting that the spectroscopic properties of the intact enzyme come from the core protein.  相似文献   

6.
7.
Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.  相似文献   

8.
Lipoic acid is a sulfur-containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of lipoate protein ligase B (LipB) and lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using Escherichia coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4′-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H saturation transfer difference and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate-binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.  相似文献   

9.
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.  相似文献   

10.
Two-dimensional (15)N-heteronuclear single-quantum coherence (HSQC) NMR studies with a di-domain (lipoyl domain+ linker+ peripheral subunit-binding domain) of the dihydrolipoyl acetyltransferase (E2) component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus allowed a molecular comparison of the need for lipoic acid to be covalently attached to the lipoyl domain in order to undergo reductive acetylation by the pyruvate decarboxylase (E1) component, in contrast with the ability of free lipoic acid to serve as substrate for the dihydrolipoyl dehydrogenase (E3) component. Tethering the lipoyl domain to the peripheral subunit-binding domain in a complex with E1 or E3 rendered the system more like the native enzyme complex, compared with the use of a free lipoyl domain, yet of a size still amenable to investigation by NMR spectroscopy. Recognition of the tethered lipoyl domain by E1 was found to be ensured by intensive interaction with the lipoyl-lysine-containing beta-turn and with residues in the protruding loop close to the beta-turn. The size and sequence of this loop varies significantly between species and dictates the lipoylated lipoyl domain as the true substrate for E1. In contrast, with E3 the main interaction sites on the tethered lipoyl domain were revealed as residues Asp41 and Ala43, which form a conserved sequence motif, DKA, around the lipoyl-lysine residue. No domain specificity is observed at this step and substrate channelling in the complex thus rests on the recognition of the lipoyl domain by the first enzyme, E1. The cofactor, thiamine diphosphate, and substrate, pyruvate, had distinct but contrasting effects on the E1/di-domain interaction, whereas NAD(+) and NADH had negligible effect on the E3/di-domain interaction. Tethering the lipoyl domain did not significantly change the nature of its interaction with E1 compared with a free lipoyl domain, indicative of the conformational freedom allowed by the linker in the movement of the lipoyl domain between active sites.  相似文献   

11.
Prokaryotic proteases demonstrate a variety of substrate-selection strategies that prevent uncontrolled protein degradation. Proteasomes and ClpXP-like proteases form oligomeric structures that exclude large substrates from central solvated chambers containing their active sites. Monomeric prolyl oligopeptidases have been shown to contain beta-propeller structures that similarly reduce access to their catalytic residues. By contrast, Tsp-like enzymes contain PDZ domains that are thought to specifically target C-terminal polypeptides. We have investigated the sequence of Thermoplasma acidophilum tricorn protease using recently-developed database search methods. The tricorn protease is known to associate into a 20 hexamer capsid enclosing an extremely large cavity that is 37 nm in diameter. It is unknown, however, how this enzyme selects its small oligopeptide substrates. Our results demonstrate the presence in tricorn protease of a PDZ domain and two predicted six-bladed beta-propeller domains. We suggest that the PDZ domain is involved in targeting non-polar C-terminal peptides, similar to those generated by the T. acidophilum proteasome, whereas the beta-propeller domains serve to exclude large substrates from the tricorn protease active site in a similar manner to that previously indicated for prolyl oligopeptidase.  相似文献   

12.
In the pyruvate dehydrogenase complex (PDHC) of Zymomonas mobilis the beta subunit of the pyruvate dehydrogenase (E1p) as well as the acetyltransferase (E2p) contain an N-terminal lipoyl domain. Both lipoyl domains were acetylated in vitro using 2-14C-pyruvate as a substrate, demonstrating that both lipoyl domains can accept acetyl groups from the E1 component. As previously shown the structural genes (pdhA alpha beta, pdhB, lpd) encoding the pyruvate dehydrogenase complex of Z. mobilis are located in two distinct gene clusters, pdhA alpha beta and pdhB-orf2-lpd (U. Neveling et al. (1998) J. Bacteriol. 180, 1540-1548). Analysis of pdh gene expression using lacZ fusions revealed that the DNA fragments upstream of pdhA alpha, pdhB and lpd each have promoter activities. These pdh promoter activities were 7-30-fold higher in Z. mobilis than in Escherichia coli.  相似文献   

13.
E E Keha  H Ronft  G B Kresze 《FEBS letters》1982,145(2):289-292
45Ca2+ incorporated in response to glucose was selectively mobilized from the beta-cell-rich pancreatic islets of ob/ob-mice after raising the intracellular Na+ by removal of K+ or addition of ouabain or veratridine. Also studies of insulin release indicated opposite effects of glucose and Na+ on the intracellular sequestration of calcium. The fact that glucose inhibits insulin release induced by raised intracellular Na+ indicates that this sugar can lower the cytoplasmic [Ca2+]. The concept of a dual action of glucose on the cytoplasmic [Ca2+]. The concept of a dual action of glucose on the cytoplasmic [Ca2+] might well explain previous observations of an inhibitory component in the glucose action on the 45Ca2+ efflux.  相似文献   

14.
15.
Geranyl diphosphate C-methyltransferase (GPPMT) from Streptomyces coelicolor A3(2) is the first methyltransferase discovered that modifies an acyclic isoprenoid diphosphate, geranyl diphosphate (GPP), to yield a noncanonical acyclic allylic diphosphate product, 2-methylgeranyl diphosphate, which serves as the substrate for a subsequent cyclization reaction catalyzed by a terpenoid cyclase, methylisoborneol synthase. Here, we report the crystal structures of GPPMT in complex with GPP or the substrate analogue geranyl S-thiolodiphosphate (GSPP) along with S-adenosyl-L-homocysteine in the cofactor binding site, resulting from in situ demethylation of S-adenosyl-L-methionine, at 2.05 or 1.82 ? resolution, respectively. These structures suggest that both GPP and GSPP can undergo catalytic methylation in crystalline GPPMT, followed by dissociation of the isoprenoid product. S-Adenosyl-L-homocysteine remains bound in the active site, however, and does not exchange with a fresh molecule of cofactor S-adenosyl-L-methionine. These structures provide important clues about the molecular mechanism of the reaction, especially with regard to the face of the 2,3 double bond of GPP that is methylated as well as the stabilization of the resulting carbocation intermediate through cation-π interactions.  相似文献   

16.
The solution structure and stability of N-terminally truncated beta2-microglobulin (deltaN6beta2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that deltaN6beta2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at microM concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that deltaN6beta2-m is significantly less protected than its wild-type counterpart. Analysis of deltaN6beta2-m by NMR shows that this loss of protection occurs in beta strands I, III, and part of II. At mM concentration gel filtration analysis shows that deltaN6beta2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of beta2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that deltaN6beta2-m could be a key intermediate of a proteolytic pathway of beta2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of beta2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between beta-strands far removed from this constrain is greatly perturbed.  相似文献   

17.
Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.  相似文献   

18.
The lipoic acid bearing domain (hbLBD) of human mitochondrial branched chain alpha-ketoacid dehydrogenase (BCKD) plays important role of substrate channeling in oxidative decarboxylation of the branched chain alpha-ketoacids. Recently hbLBD has been found to follow two-step folding mechanism without detectable presence of stable or kinetic intermediates. The present study describes the conformational stability underlying the folding of this small beta-barrel domain. Thermal denaturation in presence of urea and isothermal urea denaturation titrations are used to evaluate various thermodynamic parameters defining the equilibrium unfolding. The linear extrapolation model successfully describes the two-step; native state <-->denatured state unfolding transition of hbLBD. The average temperature of maximum stability of hbLBD is estimated as 295.6 +/- 0.9 K. Cold denaturation of hbLBD is also predicted and discussed.  相似文献   

19.
Mammalian pyruvate dehydrogenase complex (PDC) is a key multi-enzyme assembly that is responsible for glucose homeostasis maintenance and conversion of pyruvate into acetyl-CoA. It comprises a central pentagonal dodecahedral core consisting of two subunit types (E2 and E3BP) to which peripheral enzymes (E1 and E3) bind tightly but non-covalently. Currently, there are two conflicting models of PDC (E2 + E3BP) core organisation: the ‘addition’ model (60 + 12) and the ‘substitution’ model (48 + 12). Here we present the first ever low-resolution structures of human recombinant full-length PDC core (rE2/E3BP), truncated PDC core (tE2/E3BP) and native bovine heart PDC core (bE2/E3BP) obtained by small-angle X-ray scattering and small-angle neutron scattering. These structures, corroborated by negative-stain and cryo electron microscopy data, clearly reveal open pentagonal core faces, favouring the ‘substitution’ model of core organisation. The native and recombinant core structures are all similar to the truncated bacterial E2 core crystal structure obtained previously. Cryo-electron microscopy reconstructions of rE2/E3BP and rE2/E3BP:E3 directly confirm that the core has open pentagonal faces, agree with scattering-derived models and show density extending outwards from their surfaces, which is much more structurally ordered in the presence of E3. Additionally, analytical ultracentrifugation characterisation of rE2/E3BP, rE2 (full-length recombinant E2-only) and tE2/E3BP supports the substitution model. Superimposition of the small-angle neutron scattering tE2/E3BP and truncated bacterial E2 crystal structures demonstrates conservation of the overall pentagonal dodecahedral morphology, despite evolutionary diversity. In addition, unfolding studies using circular dichroism and tryptophan fluorescence spectroscopy show that the rE2/E3BP is less stable than its rE2 counterpart, indicative of a role for E3BP in core destabilisation. The architectural complexity and lower stability of the E2/E3BP core may be of benefit to mammals, where sophisticated fine-tuning is required for cores with optimal catalytic and regulatory efficiencies.  相似文献   

20.
The N‐end rule pathway uses an evolutionarily conserved mechanism in bacteria and eukaryotes that marks proteins for degradation by ATP‐dependent chaperones and proteases such as the Clp chaperones and proteases. Specific N‐terminal amino acids (N‐degrons) are sufficient to target substrates for degradation. In bacteria, the ClpS adaptor binds and delivers N‐end rule substrates for their degradation upon association with the ClpA/P chaperone/protease. Here, we report the first crystal structure, solved at 2.7 Å resolution, of a eukaryotic homolog of bacterial ClpS from the malaria apicomplexan parasite Plasmodium falciparum (Pfal). Despite limited sequence identity, Plasmodium ClpS is very similar to bacterial ClpS. Akin to its bacterial orthologs, plasmodial ClpS harbors a preformed hydrophobic pocket whose geometry and chemical properties are compatible with the binding of N‐degrons. However, while the N‐degron binding pocket in bacterial ClpS structures is open and accessible, the corresponding pocket in Plasmodium ClpS is occluded by a conserved surface loop that acts as a latch. Despite the closed conformation observed in the crystal, we show that, in solution, Pfal‐ClpS binds and discriminates peptides mimicking bona fide N‐end rule substrates. The presence of an apicoplast targeting peptide suggests that Pfal‐ClpS localizes to this plastid‐like organelle characteristic of all Apicomplexa and hosting most of its Clp machinery. By analogy with the related ClpS1 from plant chloroplasts and cyanobacteria, Plasmodium ClpS likely functions in association with ClpC in the apicoplast. Our findings open new venues for the design of novel anti‐malarial drugs aimed at disrupting parasite‐specific protein quality control pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号