首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the major histocompatibility complex class II I-E dependence of mouse mammary tumor virus (MMTV) superantigens, we constructed hybrids between the I-E-dependent MMTV(GR) and the I-E-independent mtv-7 superantigens and tested them in vivo. Our results suggest that, although the C-terminal third mediates I-A interaction, additional binding sites are located elsewhere in the superantigen.  相似文献   

2.
We have previously reported new Mtv loci, Mtv-48 and -51, in the Japanese laboratory mouse strains CS and NC. Here we show by backcross analysis that both Mtv-48 and -51 cosegregate with very slow deletion of T cells bearing V beta 2. The nucleotide sequences of the open reading frames in the 3' long terminal repeats of Mtv-48 and -51 were very similar to those of Mtv-DDO, mouse mammary tumor virus C4 [MMTV(C4)], and MMTV(BALB/cV), which encode V beta 2-specific superantigens. Furthermore, backcross female mice carrying Mtv-48 but not Mtv-51 were found to be able to produce milk-borne MMTV(CS), which can vigorously stimulate V beta 2-expressing T cells after local injection in vivo in an I-E-dependent manner. On the other hand, mice carrying Mtv-51 but not Mtv-48 could not produce such an MMTV in milk. The nucleotide sequences of MMTV(CS) open reading frame were completely matched with those of Mtv-48. These results indicate that the provirus Mtv-48 but not Mtv-51 is capable of producing a milk-borne virus of which the superantigen stimulates V beta 2-expressing T cells.  相似文献   

3.
The genetic linkage of loci encoding stimulatory Mlsa and Mlsc determinants with proviruses of mouse mammary tumour viruses (MMTV) has been shown. We previously have reported that the ligand(s) for V beta 5, V beta 11, and V beta 12 behaves as a novel minor lymphocyte-stimulating (Mls) determinant(s), Mlsf, to induce the strong proliferation of unprimed T cells, and that this ligand(s) also functions as a self-Ag for the clonal deletion of self-reactive T cells. In the accompanying paper (Part I), a unique polymorphism characteristic of the Mlsf gene product is presented. In order to determine the genetic basis for this novel Mls system, we examined the progeny of multiple genetic crosses to identify the MMTV proviral loci involved in the clonal deletion of self-Mlsf-reactive T cells. Results from these investigations indicated that at least three known MMTV proviruses, Mtv-8, Mtv-9, and Mtv-11 are involved in the expression of Mlsf gene products. Presence of Mtv-9 results in the complete deletion of V beta 5, V beta 11, and V beta 12; Mtv-8 is associated with the complete deletion of V beta 12, but only a partial deletion of V beta 11 (primarily CD4-positive T cell subset) with little or no deletion of V beta 5; and Mtv-11 induces the complete deletion of V beta 11 and V beta 12, but no deletion of V beta 5. Given the significant sequence homology in the C-terminal portion of the open reading frame (ORF) region among these three MMTV and the almost equivalent effect of these three MMTV provirus upon the V beta 12 repertoire, their apparent hierarchic effect upon the V beta 5 and V beta 11 repertoires suggests that affinity differences in recognition of the same determinant by different TCR V beta may play a significant role in the clonal deletion of self-reactive T cells.  相似文献   

4.
Bacterial superantigens are potent T-cell stimulatory protein molecules produced by Staphylococcus aureus and Streptococcus pyogenes. Their superantigenic activity can be attributed to their ability to cross-link major histocompatibility complex class II molecules with T-cell receptors (TCRs) to form a tri-molecular complex. Each superantigen is known to interact with a specific V(beta) element of TCR. Staphylococcal enterotoxin B (SEB, a superantigen), a primary cause of food poisoning, is also responsible for a significant percentage of non-menstrual associated toxic shock syndrome in patients with a variety of staphylococcal infections. Structural studies have elucidated a binding cavity on the toxin molecule essential for TCR binding. To understand the crucial residues involved in binding, mutagenesis analysis was performed. Our analysis suggest that mutation of a conserved residue Thr(112) to Ser (T112S) in the binding cavity induces a selective reduction in the affinity for binding one TCR V(beta) family and can be attributed to the structural differences in the native and mutant toxins. We present a detailed comparison of the mutant structure determined at 2.0 A with the previously reported native SEB and SEB-TCR V(beta) complex structures.  相似文献   

5.
Superantigens encoded in the genome or released by bacteria have been identified as potent modulators of the murine immune system. High frequencies of mature or immature T cells are activated or intrathymically deleted when superantigens cross-link MHC class II molecules and the V beta element of the TCR. The V beta specificity discriminates superantigens from polyclonal T cell stimulators as well as specific Ag and determines the immunomodulatory role in shaping the T cell repertoire. A similar regulatory function of superantigens in the human immune system is less well established. Here, we have studied a series of human T cell clones sharing the TCR V beta 6 element and describe a surprising heterogeneity in their responsiveness to staphylococcal exotoxins. The V beta 6 gene segment had the ability to respond to all staphylococcal enterotoxins (SE); however, for individual T cell clones, there was a clear predominance of SE C3 reactivity compared to SE B and SE C2. The clonal heterogeneity of SE responsiveness did not correlate to sequence polymorphisms in the fourth hypervariable region of the V beta 6 segment, the presumptive binding site for superantigens. Superantigen reactivity was crucially influenced by the presenting HLA-DR molecule, especially when the superantigen served as a coligand, enhancing or suppressing the Ag-specific activation of the TCR. These data suggest that the correlation between human TCR V beta gene segments and superantigen responses is not stringent. Potential intrathymic deletion mechanisms controlled by superantigens may be less selective in humans and may result in a leakiness influenced by the host HLA-DR molecules.  相似文献   

6.
Mice harbor a family of endogenous retroviruses, the mouse mammary tumor viruses (MMTV), which encode superantigens. These superantigens are responsible for the deletion of T cells expressing certain Vbeta chains of the T-cell receptor in the thymus. Human T cells are able to recognize MMTV-encoded superantigens presented by human major histocompatibility complex class II-positive cells. Owing to this and to the similarity of the human and murine immune systems, it was speculated that human endogenous retroviruses might also code for superantigens. Recently, it was reported that a proviral clone (IDDMK(1,2)22) of the human endogenous retrovirus family HTDV/HERV-K encodes a superantigen. The putative superantigen gene was located within the env region of the virus. Stimulated by these findings, we amplified by PCR and cloned into eucaryotic expression vectors open reading frames (ORFs) which were identical or very similar to IDDMK(1,2)22. When we transfected these vectors into A20 cells, a murine B-cell lymphoma, we were able to demonstrate mRNA expression and protein production. However, we did not find any evidence that the ORF stimulated human or murine T cells in a Vbeta-specific fashion, the most prominent feature of superantigens.  相似文献   

7.
After mouse mammary tumor virus (MMTV) infection, B lymphocytes present a superantigen (Sag) and receive help from the unlimited number of CD4(+) T cells expressing Sag-specific T-cell receptor Vbeta elements. The infected B cells divide and differentiate, similarly to what occurs in classical B-cell responses. The amplification of Sag-reactive T cells can be considered a primary immune response. Since B cells are usually not efficient in the activation of naive T cells, we addressed the question of whether professional antigen-presenting cells such as dendritic cells (DCs) are responsible for T-cell priming. We show here, using MMTV(SIM), a viral isolate which requires major histocompatibility complex class II I-E expression to induce a strong Sag response in vivo, that transgenic mice expressing I-E exclusively on DCs (I-EalphaDC tg) reveal a strong Sag response. This Sag response was dependent on the presence of B cells, as indicated by the absence of stimulation in I-EalphaDC tg mice lacking B cells (I-EalphaDC tg muMT(-/-)), even if these B cells lack I-E expression. Furthermore, the involvement of either residual transgene expression by B cells or transfer of I-E from DCs to B cells was excluded by the use of mixed bone marrow chimeras. Our results indicate that after priming by DCs in the context of I-E, the MMTV(SIM) Sag can be recognized on the surface of B cells in the context of I-A. The most likely physiological relevance of the lowering of the antigen threshold required for T-cell/B-cell collaboration after DC priming is to allow B cells with a low affinity for antigen to receive T-cell help in a primary immune response.  相似文献   

8.
Of 41 wild-derived mouse strains analyzed, 14 contained T cells bearing V beta 17 receptors in spite of the concomitant expression of I-E antigens. Reciprocal F1 and F2 hybrids of one of these strains, PWK, with laboratory strains revealed different patterns of V beta 17 T cell deletions from those observed with V beta 17 T cells from SJL, implying that the two V beta 17 regions are associated with recognition of distinct superantigens. The structures of the V beta 17 alleles differ by two amino acid substitutions, which lie together in an area distant from the predicted site of T cell receptor interaction with peptide-MHC complexes but overlapping with that implicated in V beta 8.2 recognition of Mls-1 superantigen. This demonstrates that the self-superantigen leading to V beta 17 T cell deletion varies with the allele of the receptor gene and confirms that T cell deletions by such ligands involve interactions with a region of the V beta domain that is distinct from the conventional combining site.  相似文献   

9.
The three-dimensional structure of a bacterial superantigen, Staphylococcus aureus enterotoxin H (SEH), bound to human major histocompatibility complex (MHC) class II (HLA-DR1) has been determined by X-ray crystallography to 2.6 A resolution (1HXY). The superantigen binds on top of HLA-DR1 in a completely different way from earlier co-crystallized superantigens from S.aureus. SEH interacts with high affinity through a zinc ion with the beta1 chain of HLA-DR1 and also with the peptide presented by HLA-DR1. The structure suggests that all superantigens interacting with MHC class II in a zinc-dependent manner present the superantigen in a common way. This suggests a new model for ternary complex formation with the T-cell receptor (TCR), in which a contact between the TCR and the MHC class II is unlikely.  相似文献   

10.
Stimulation of T cells by superantigens has been reported to be dependent on the presence of APC where binding to class II molecules is a prerequisite to recognition by the TCR. We examined the response of human T cells and a leukemic T cell line, Jurkat to the superantigen, streptococcal M protein. We show that immobilized or cross-linked streptococcal M protein stimulates Jurkat cells (V beta 8), but not normal purified human T cells, to produce IL-2. Activation of purified T cells by this superantigen required costimulatory signals provided by PMA, IL-1, and IL-6. These cytokines and growth factors alone can induce IL-2 production by T cells; however, proliferation occurred only in the presence of superantigen, which together with PMA, IL-1, and IL-6 induced the expression of IL-2R alpha on T cells. Similar results were obtained when the response of purified T cells to another known superantigen, staphylococcal enterotoxin B were examined, indicating that this phenomenon is not unique to M protein. Superantigens interact with a large number of T cells with particular V beta, and thus provide excellent models for studies of the role of biochemical events and signal transduction in T cell activation. Understanding these events may also explain the pathogenesis of autoimmune diseases associated with certain superantigens, such as streptococcal M protein that is thought to be involved in rheumatic fever and rheumatic heart disease.  相似文献   

11.
Mycoplasma arthritidis T cell mitogen (MAM), in association with its MHC ligand, is recognized by T cells that express TCR-alpha/beta assembled with a product(s) of the V beta 8 gene family. We show here that lymphocytes from mice which fail to express V beta 8 products can also be activated by MAM and the resulting cultures exhibit a marked increase in V beta 6 TCR-bearing cells. Evidence was also obtained that MAM can activate T cells that express all three V beta 8 TCR. The mAb, F23.1, which recognizes all V beta 8 gene products, was strongly inhibitory for MAM-induced proliferation of CBA cells whose T cell repertoire for MAM consists of T cells that express V beta 8.2 and 8.3 TCR. In contrast, the F23.1 mAb was only weakly inhibitory for BALB/c splenocytes which express V beta 6 TCR in addition to all three V beta 8 TCR. Involvement of V beta 8.1, 8.2, 8.3, and V beta 6 in MAM-induced proliferation was confirmed by expanding lymphocyte cultures in the presence of MAM and phenotyping the activated cells for expression of individual V beta TCR. There was also evidence for a selective activation of T cells bearing specific V beta TCR because BALB/c T cell populations expanded with MAM were comprised of 46.2% V beta 8.2+ cells, 18.6% V beta 8.1+ cells, 7.6% V beta 8.3+ cells and 6.7% V beta 6+ cells. Recent studies suggest that the newly described "superantigens" including the staphylococcal enterotoxins and the self minor lymphocyte-stimulating Ag activate T cells in a manner similar to that described earlier for MAM. The discovery of shared recognition of these proteins by specific V beta TCR strongly suggests that MAM belongs to the superantigen protein family, the members of which may share cross-reactive epitopes. Inasmuch as MAM is produced by an organism which induces chronic joint disease, our findings provide the basis for a new model to study the role of superantigens in the development of chronic autoimmune type diseases.  相似文献   

12.
Human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive neurological disease characterized by marked degeneration of the spinal cord and the presence of antibodies against HTLV-1. Patients with HAM/TSP, but not asymptomatic carriers, show very high precursor frequencies of HTLV-1-specific CD8+ T cells in peripheral blood and cerebrospinal fluid, suggestive of a role of these T cells in the pathogenesis of the disease. In HLA-A2+ HAM/TSP patients, HTLV-1-specific T cells were demonstrated to be directed predominantly against one HTLV-1 epitope, namely, Tax11-19. In the present study, we analyzed HLA-A2-restricted HTLV-1 Tax11-19-specific cytotoxic T cells from three patients with HAM/TSP. An analysis of the T-cell receptor (TCR) repertoire of these cells revealed an absence of restricted variable (V) region usage. Different combinations of TCR V alpha and V beta genes were utilized between, but also within, the individual patients for the recognition of Tax11-19. Sequence analysis of the TCR showed evidence for an oligoclonal expansion of few founder T cells in each patient. Apparent structural motifs were identified for the CDR3 regions of the TCR beta chains. One T-cell clone could be detected within the same patient over a period of 3 years. We suggest that these in vivo clonally expanded T cells might play a role in the pathogenesis of HAM/TSP and provide information on HTLV-1-specific TCR which may elucidate the nature of the T cells that infiltrate the central nervous system in HAM/TSP patients.  相似文献   

13.
Theiler's murine encephalomyelitis virus induces chronic demyelinating disease in genetically susceptible mice. The histopathological and immunological manifestation of the disease closely resembles human multiple sclerosis, and, thus, this system serves as a relevant infectious model for multiple sclerosis. The pathogenesis of demyelination appears to be mediated by the inflammatory Th1 response to viral epitopes. In this study, T cell repertoire reactive to the major pathogenic VP1 epitope region (VP1233-250) was analyzed. Diverse minimal T cell epitopes were found within this region, and yet close to 50% of the VP1-reactive T cell hybridomas used V beta 16. The majority (8/11) of the V beta 16+ T cells required the C-terminal amino acid residue on the epitope, valine at position 245, and every T cell hybridoma recognizing this C-terminal residue expressed V beta 16. However, the complementarity-determining region 3 sequences of the V beta 16+ T cell hybridomas were markedly heterogeneous. In contrast, such a restriction was not found in the V alpha usage. Only restricted residues at this C-terminal position allowed for T cell activation, suggesting that V beta 16 may recognize this terminal residue. Further functional competition analysis for TCR and MHC class II-contacting residues indicate that many different residues can be involved in the class II and/or TCR binding depending on the T cell population, even if they recognize the identical minimal epitope region. Thus, recognition of the C-terminal residue of a minimal T cell epitope may associate with a particular V beta (but not V alpha) subfamily-specific sequence, resulting in a highly restricted V beta repertoire of the epitope-specific T cells.  相似文献   

14.
A B cell line, B6-1710, that expresses the defective virus known to induce murine AIDS stimulates a large fraction of nonprimed splenic T cells. Analysis of the T cell population responding to the B6-1710 for TCR V beta-chain usage revealed that, in addition to the previously reported V beta 5-chain-positive T cells, T cells bearing V beta 11 and V beta 12 are also specifically enriched. We have established V beta 5+ T cell lines, clones, and hybridomas expressing identical TCR with different CD4/CD8 phenotypes and demonstrated that T cell reactivity to B6-1710 is, although not absolute, dependent on the presence of CD4 molecules. Further analysis of T cell hybridomas with known J beta-chain usage revealed that D beta- and J beta-chain usage do not play crucial roles in T cell reactivity to B6-1710 B cells. However, T cell hybridomas derived from TCR-V beta gene transgenic mice were found to be heterogeneous for their reactivity to B6-1710, suggesting that the V alpha-chains associating with the transgenic V beta-chain determine T cell responsiveness to B6-1710. These data clearly demonstrate that T cell reactivity to a murine AIDS virus expressing B cell line resembles that previously reported for Mls-like superantigens.  相似文献   

15.
We investigated the T-cell receptor (TCR) repertoire of CD8(+) T cells that recognize the Tax11-19 immunodominant epitope of Tax protein expressed by human T-cell leukemia virus (HTLV-1) that is implicated in the disease HTLV-1-associated myelopathy (HAM/TSP). A panel of Tax11-19-reactive CD8(+) T-cell clones was generated by single-cell cloning of Tax11-19/HLA-A*0201 tetramer-positive peripheral blood lymphocytes from an HTLV-1-infected individual. The analyses of TCR usage revealed that the combination of diverse TCR alpha and beta chains could be used for the recognition of Tax11-19 but the major population of T-cell clones (15 of 24 clones) expressed the TCR V beta 13S1 and V alpha 17 chain. We found striking similarities in CDR3 regions of TCR alpha and beta chains between our major group of CD8(+) T-cell clones and those originating from different subjects as previously reported, including TCRs with resolved crystal structures. A 3-amino-acid sequence (PG-G) in the CDR3 region of the V beta chain was conserved among all the Tax11-19-reactive T-cell clones expressing V beta 13S1 and V alpha 17 chains. Conserved amino acids in the CDR3 region do not directly contact the Tax11-19 peptide, as corroborated by the crystal structure of B7-TCR, a TCR that is almost identical to VB13S1 clones isolated in this study. Analysis of fine peptide specificity using altered peptide ligands (APL) of Tax11-19 revealed a similar recognition pattern among this panel of T-cell clones. These data suggest that the PG-G amino acids in the CDR3 beta loop provide a structural framework necessary for the maintenance of the tertiary TCR structure.  相似文献   

16.
Many virus infections give rise to surprisingly limited T-cell responses directed to very few immunodominant determinants. We have been examining the cytotoxic T-lymphocyte (CTL) response to herpes simplex virus type 1 (HSV-1) infection. Previous studies have identified the glycoprotein B-derived peptide from residues 498 to 505 (gB(498-505)) as one of at least three determinants recognized by HSV-1-specific CTLs isolated from C57BL/6 mice. We had previously found that in vitro-derived CTLs directed to gB(498-505) show a characteristic pattern of T-cell receptor (TCR) usage, with 60% of gB(498-505)-specific CD8(+) T cells expressing BV10(+) TCR beta chains and a further 20% expressing BV8S1. In this report, we confirm that this TCR V-region bias is also reflected in the ex vivo response to HSV-1 infection. A high proportion of activated CD8(+) draining lymph node cells were found to express these dominant V regions, suggesting that a substantial number of in vivo responding T cells were directed to this one viral determinant. The use of an HSV-1 deletion mutant lacking the gB(498-505) determinant in combination with accurate intracellular gamma interferon staining allowed us to quantify the extent of gB-specific T-cell dominance. Together, these results suggested that between 70 and 90% of all CD8(+) HSV-1-specific T cells target gB(498-505). While deletion of this determinant resulted in an attenuated CD8(+) T-cell response, it also permitted the emergence of one or more previously unidentified cryptic specificities. Overall, HSV-1 infection of C57BL/6 mice results in an extremely focused pattern of CD8(+) T-cell selection in terms of target specificity and TCR expression.  相似文献   

17.
Mouse mammary tumor viruses encode superantigens that bind to class II major histocompatibility complex proteins and engage T cells that bear particular V beta s. Among these superantigens is the long known, but previously uncharacterized, Mls-1a product, encoded by Mtv-7. Using a monoclonal antibody, we detect the Mtv-7 superantigen on the surface of activated B cells, but not on T cells or resting B cells. The superantigen is synthesized as a 45 kd transmembrane glycoprotein precursor, but is proteolytically processed to yield an 18.5 kd surface protein that we suggest is the functional form of the superantigen.  相似文献   

18.
Streptococcal exotoxins have been implicated in the pathogenesis of a toxic shock-like syndrome and scarlet fever. Previous studies have demonstrated that these toxins are potent stimulators of human T cells and have structural homology to staphylococcal enterotoxins. In the current study, we investigated the mechanism by which streptococcal erythrogenic toxins type A (SPEA) and B (SPEB) activate T cells and compared it with anti-CD3 and the known "superantigen" staphylococcal enterotoxin B. SPEA was found to selectively activate T cells bearing V beta 8, V beta 12, and V beta 14, whereas SPEB selectively activated T cells bearing V beta 2 and V beta 8. Furthermore, fibroblasts transfected with MHC class II molecules were capable of presenting SPEA and SPEB to purified T cells. The T cell response to these toxins, however, was not MHC-restricted. Although the streptococcal exotoxins stimulated both CD4+ and CD8+ T cells, SPEA but not SPEB stimulated the CD4+ T cell subset proportionately more than the CD8+ T cell subset. Our results indicate that SPEA and SPEB, like the staphylococcal enterotoxins, are superantigens and suggest a mechanism by which they may mediate particular systemic syndromes associated with streptococcal infections.  相似文献   

19.
Bacterial superantigens, a diverse family of toxins, induce an inflammatory cytokine storm that can lead to lethal shock. CD28 is a homodimer expressed on T cells that functions as the principal costimulatory ligand in the immune response through an interaction with its B7 coligands, yet we show here that to elicit inflammatory cytokine gene expression and toxicity, superantigens must bind directly into the dimer interface of CD28. Preventing access of the superantigen to CD28 suffices to block its lethality. Mice were protected from lethal superantigen challenge by short peptide mimetics of the CD28 dimer interface and by peptides selected to compete with the superantigen for its binding site in CD28. Superantigens use a conserved β-strand/hinge/α-helix domain of hitherto unknown function to engage CD28. Mutation of this superantigen domain abolished inflammatory cytokine gene induction and lethality. Structural analysis showed that when a superantigen binds to the T cell receptor on the T cell and major histocompatibility class II molecule on the antigen-presenting cell, CD28 can be accommodated readily as third superantigen receptor in the quaternary complex, with the CD28 dimer interface oriented towards the β-strand/hinge/α-helix domain in the superantigen. Our findings identify the CD28 homodimer interface as a critical receptor target for superantigens. The novel role of CD28 as receptor for a class of microbial pathogens, the superantigen toxins, broadens the scope of pathogen recognition mechanisms.  相似文献   

20.
The milk-borne mouse mammary tumor virus (MMTV) infects newborn mice via the intestine. Infection is initially restricted to Peyer's patches and later spreads to the epithelial cells of the mammary gland. The receptor that mediates uptake and transport of MMTV across the intestinal barrier has not yet been identified, The neonatal Fc receptor (nFcR), which is expressed by enterocytes during the first two weeks of life, is downregulated at weaning, and its disappearance correlates with the onset of intestinal resistance to MMTV. To test whether the nFcR mediates transport and allows infection, we foster nursed on infected MMTV mothers beta2 microglobulin-deficient (beta2m-deficient) newborn mice that are unable to express the nFcR at the surface of their enterocytes. Exposure of beta2m-deficient mice to milk-borne virus resulted in the deletion of peripheral blood T cells reactive to the superantigen encoded by MMTV. Since beta2m-deficient newborn mice are susceptible to MMTV infection despite the lack of the nFcR, we conclude that the nFcR is not required for MMTV transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号